Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4432
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİplikçi, Serdar-
dc.date.accessioned2019-08-16T11:34:03Z
dc.date.available2019-08-16T11:34:03Z
dc.date.issued2006-
dc.identifier.issn0890-6327-
dc.identifier.urihttps://hdl.handle.net/11499/4432-
dc.identifier.urihttps://doi.org/10.1002/acs.919-
dc.description.abstractIn this work, an online support vector machines (SVM) training method (Neural Comput. 2003; 15: 2683-2703), referred to as the accurate online support vector regression (AOSVR) algorithm, is embedded in the previously proposed support vector machines-based generalized predictive control (SVM-Based GPC) architecture (Support vector machines based generalized predictive control, under review), thereby obtaining a powerful scheme for controlling non-linear systems adaptively. Starting with an initially empty SVM model of the unknown plant, the proposed online SVM-based GPC method performs the modelling and control tasks simultaneously. At each iteration, if the SVM model is not accurate enough to represent the plant dynamics at the current operating point, it is updated with the training data formed by persistently exciting random input signal applied to the plant, otherwise, if the model is accepted as accurate, a generalized predictive control signal based on the obtained SVM model is applied to the plant. After a short transient time, the model can satisfactorily reflect the behaviour of the plant in the whole phase space or operation region. The incremental algorithm of AOSVR enables the SVM model to learn the new training data pair, while the decremental algorithm allows the SVM model to forget the oldest training point. Thus, the SVM model can adapt the changes in the plant and also in the operating conditions. The simulation results on non-linear systems have revealed that the proposed method provides an excellent control quality. Furthermore, it maintains its performance when a measurement noise is added to the output of the underlying system. Copyright © 2006 John Wiley & Sons, Ltd.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Adaptive Control and Signal Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive controlen_US
dc.subjectGeneralized predictive controlen_US
dc.subjectOnline controlen_US
dc.subjectSupport vector machinesen_US
dc.subjectAdaptive control systemsen_US
dc.subjectAlgorithmsen_US
dc.subjectLearning systemsen_US
dc.subjectMathematical modelsen_US
dc.subjectNonlinear systemsen_US
dc.subjectQuality controlen_US
dc.subjectPredictive control systemsen_US
dc.titleOnline trained support vector machines-based generalized predictive control of non-linear systemsen_US
dc.typeArticleen_US
dc.identifier.volume20en_US
dc.identifier.issue10en_US
dc.identifier.startpage599
dc.identifier.startpage599en_US
dc.identifier.endpage621en_US
dc.authorid0000-0003-3806-1442-
dc.identifier.doi10.1002/acs.919-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-33846087392en_US
dc.identifier.wosWOS:000243014000004en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

38
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

35
checked on Nov 21, 2024

Page view(s)

36
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.