Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4462
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİplikçi, Serdar-
dc.date.accessioned2019-08-16T11:34:14Z
dc.date.available2019-08-16T11:34:14Z
dc.date.issued2006-
dc.identifier.issn1049-8923-
dc.identifier.urihttps://hdl.handle.net/11499/4462-
dc.identifier.urihttps://doi.org/10.1002/rnc.1094-
dc.description.abstractIn this study, we propose a novel control methodology that introduces the use of support vector machines (SVMs) in the generalized predictive control (GPC) scheme. The SVM regression algorithms have extensively been used for modelling nonlinear systems due to their assurance of global solution, which is achieved by transforming the regression problem into a convex optimization problem in dual space, and also their higher generalization potential. These key features of the SVM structures lead us to the idea of employing a SVM model of an unknown plant within the GPC context. In particular, the SVM model can be employed to obtain gradient information and also it can predict future trajectory of the plant output, which are needed in the cost function minimization block. Simulations have confirmed that proposed SVM-based GPC scheme can provide a noticeably high control performance, in other words, an unknown nonlinear plant controlled by SVM-based GPC can accurately track the reference inputs with different shapes. Moreover, the proposed SVM-based GPC scheme maintains its control performance under noisy conditions. Copyright © 2006 John Wiley & Sons, Ltd.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Robust and Nonlinear Controlen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGeneralized predictive controlen_US
dc.subjectModelling and predictionen_US
dc.subjectSupport vector machinesen_US
dc.subjectAlgorithmsen_US
dc.subjectComputer simulationen_US
dc.subjectGlobal optimizationen_US
dc.subjectMathematical modelsen_US
dc.subjectNonlinear control systemsen_US
dc.subjectProblem solvingen_US
dc.subjectRegression analysisen_US
dc.subjectConvex optimization problemen_US
dc.subjectFunction minimization blocken_US
dc.subjectPredictive control systemsen_US
dc.titleSupport vector machines-based generalized predictive controlen_US
dc.typeArticleen_US
dc.identifier.volume16en_US
dc.identifier.issue17en_US
dc.identifier.startpage843
dc.identifier.startpage843en_US
dc.identifier.endpage862en_US
dc.identifier.doi10.1002/rnc.1094-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-33751209792en_US
dc.identifier.wosWOS:000242314000002en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

69
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

52
checked on Nov 24, 2024

Page view(s)

36
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.