Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/4477
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Murat, Yetiş Şazi | - |
dc.contributor.author | Ceylan, Halim | - |
dc.date.accessioned | 2019-08-16T11:34:20Z | |
dc.date.available | 2019-08-16T11:34:20Z | |
dc.date.issued | 2006 | - |
dc.identifier.issn | 0301-4215 | - |
dc.identifier.uri | https://hdl.handle.net/11499/4477 | - |
dc.identifier.uri | https://doi.org/10.1016/j.enpol.2005.02.010 | - |
dc.description.abstract | The paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem. © 2005 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Energy Policy | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial neural networks | en_US |
dc.subject | GNP | en_US |
dc.subject | Transport energy demand | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Backpropagation | en_US |
dc.subject | Economic and social effects | en_US |
dc.subject | Energy management | en_US |
dc.subject | Forecasting | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Gross national product (GNP) | en_US |
dc.subject | Socio-economic indicators | en_US |
dc.subject | Feedforward neural networks | en_US |
dc.subject | artificial neural network | en_US |
dc.subject | back propagation | en_US |
dc.subject | demand-side management | en_US |
dc.subject | energy use | en_US |
dc.subject | forecasting method | en_US |
dc.subject | Gross National Product | en_US |
dc.subject | numerical model | en_US |
dc.title | Use of artificial neural networks for transport energy demand modeling | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 34 | en_US |
dc.identifier.issue | 17 | en_US |
dc.identifier.startpage | 3165 | |
dc.identifier.startpage | 3165 | en_US |
dc.identifier.endpage | 3172 | en_US |
dc.authorid | 0000-0002-7033-7026 | - |
dc.authorid | 0000-0002-4616-5439 | - |
dc.identifier.doi | 10.1016/j.enpol.2005.02.010 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-33746976184 | en_US |
dc.identifier.wos | WOS:000241644200048 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale_University | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 10.02. Civil Engineering | - |
crisitem.author.dept | 10.02. Civil Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
157
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
129
checked on Nov 22, 2024
Page view(s)
54
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.