Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4477
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMurat, Yetiş Şazi-
dc.contributor.authorCeylan, Halim-
dc.date.accessioned2019-08-16T11:34:20Z
dc.date.available2019-08-16T11:34:20Z
dc.date.issued2006-
dc.identifier.issn0301-4215-
dc.identifier.urihttps://hdl.handle.net/11499/4477-
dc.identifier.urihttps://doi.org/10.1016/j.enpol.2005.02.010-
dc.description.abstractThe paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem. © 2005 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofEnergy Policyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectGNPen_US
dc.subjectTransport energy demanden_US
dc.subjectAlgorithmsen_US
dc.subjectBackpropagationen_US
dc.subjectEconomic and social effectsen_US
dc.subjectEnergy managementen_US
dc.subjectForecastingen_US
dc.subjectMathematical modelsen_US
dc.subjectGross national product (GNP)en_US
dc.subjectSocio-economic indicatorsen_US
dc.subjectFeedforward neural networksen_US
dc.subjectartificial neural networken_US
dc.subjectback propagationen_US
dc.subjectdemand-side managementen_US
dc.subjectenergy useen_US
dc.subjectforecasting methoden_US
dc.subjectGross National Producten_US
dc.subjectnumerical modelen_US
dc.titleUse of artificial neural networks for transport energy demand modelingen_US
dc.typeArticleen_US
dc.identifier.volume34en_US
dc.identifier.issue17en_US
dc.identifier.startpage3165
dc.identifier.startpage3165en_US
dc.identifier.endpage3172en_US
dc.authorid0000-0002-7033-7026-
dc.authorid0000-0002-4616-5439-
dc.identifier.doi10.1016/j.enpol.2005.02.010-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-33746976184en_US
dc.identifier.wosWOS:000241644200048en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.cerifentitytypePublications-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

157
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

129
checked on Nov 22, 2024

Page view(s)

54
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.