Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/4479
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gölcü, Mustafa | - |
dc.date.accessioned | 2019-08-16T11:34:21Z | |
dc.date.available | 2019-08-16T11:34:21Z | |
dc.date.issued | 2006 | - |
dc.identifier.issn | 0196-8904 | - |
dc.identifier.uri | https://hdl.handle.net/11499/4479 | - |
dc.identifier.uri | https://doi.org/10.1016/j.enconman.2006.01.011 | - |
dc.description.abstract | Experimental studies were made to investigate the effects of splitter blade length (25%, 35%, 50%, 60% and 80% of the main blade length) on the pump characteristics of deep well pumps for different blade numbers (z = 3, 4, 5, 6 and 7). In this study, an artificial neural network (ANN) was used for modeling the performance of deep well pumps with splitter blades. Two hundred and ten experimental results were used to train and test. Forty-two patterns have been randomly selected and used as the test data. The main parameters for the experiments are the blade number (z), non-dimensional splitter blade length (over(L, -)), flow rate (Q, l/s), head (Hm, m), efficiency (?, %) and power (Pe, kW). z, over(L, -) and Q have been used as the input layer, and Hm and ? have also been used as the output layer. The best training algorithm and number of neurons were obtained. Training of the network was performed using the Levenberg-Marquardt (LM) algorithm. To determine the effect of the transfer function, different ANN models are trained, and the results of these ANN models are compared. Some statistical methods; fraction of variance (R2) and root mean squared error (RMSE) values, have been used for comparison. © 2006 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Energy Conversion and Management | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Blade number | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Pump performance | en_US |
dc.subject | Splitter blade | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Flow measurement | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Random processes | en_US |
dc.subject | Statistical methods | en_US |
dc.subject | Turbomachine blades | en_US |
dc.subject | Well pumps | en_US |
dc.subject | Levenberg Marquardt (LM) algorithm | en_US |
dc.title | Artificial neural network based modeling of performance characteristics of deep well pumps with splitter blade | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 47 | en_US |
dc.identifier.issue | 18-19 | en_US |
dc.identifier.startpage | 3333 | |
dc.identifier.startpage | 3333 | en_US |
dc.identifier.endpage | 3343 | en_US |
dc.identifier.doi | 10.1016/j.enconman.2006.01.011 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-33745912235 | en_US |
dc.identifier.wos | WOS:000239823900040 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale_University | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
crisitem.author.dept | 20.01. Automotive Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
36
checked on Sep 16, 2024
WEB OF SCIENCETM
Citations
22
checked on Sep 1, 2024
Page view(s)
34
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.