Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4479
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGölcü, Mustafa-
dc.date.accessioned2019-08-16T11:34:21Z
dc.date.available2019-08-16T11:34:21Z
dc.date.issued2006-
dc.identifier.issn0196-8904-
dc.identifier.urihttps://hdl.handle.net/11499/4479-
dc.identifier.urihttps://doi.org/10.1016/j.enconman.2006.01.011-
dc.description.abstractExperimental studies were made to investigate the effects of splitter blade length (25%, 35%, 50%, 60% and 80% of the main blade length) on the pump characteristics of deep well pumps for different blade numbers (z = 3, 4, 5, 6 and 7). In this study, an artificial neural network (ANN) was used for modeling the performance of deep well pumps with splitter blades. Two hundred and ten experimental results were used to train and test. Forty-two patterns have been randomly selected and used as the test data. The main parameters for the experiments are the blade number (z), non-dimensional splitter blade length (over(L, -)), flow rate (Q, l/s), head (Hm, m), efficiency (?, %) and power (Pe, kW). z, over(L, -) and Q have been used as the input layer, and Hm and ? have also been used as the output layer. The best training algorithm and number of neurons were obtained. Training of the network was performed using the Levenberg-Marquardt (LM) algorithm. To determine the effect of the transfer function, different ANN models are trained, and the results of these ANN models are compared. Some statistical methods; fraction of variance (R2) and root mean squared error (RMSE) values, have been used for comparison. © 2006 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofEnergy Conversion and Managementen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBlade numberen_US
dc.subjectNeural networksen_US
dc.subjectPump performanceen_US
dc.subjectSplitter bladeen_US
dc.subjectAlgorithmsen_US
dc.subjectFlow measurementen_US
dc.subjectMathematical modelsen_US
dc.subjectRandom processesen_US
dc.subjectStatistical methodsen_US
dc.subjectTurbomachine bladesen_US
dc.subjectWell pumpsen_US
dc.subjectLevenberg Marquardt (LM) algorithmen_US
dc.titleArtificial neural network based modeling of performance characteristics of deep well pumps with splitter bladeen_US
dc.typeArticleen_US
dc.identifier.volume47en_US
dc.identifier.issue18-19en_US
dc.identifier.startpage3333
dc.identifier.startpage3333en_US
dc.identifier.endpage3343en_US
dc.identifier.doi10.1016/j.enconman.2006.01.011-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-33745912235en_US
dc.identifier.wosWOS:000239823900040en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.dept20.01. Automotive Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

36
checked on Sep 16, 2024

WEB OF SCIENCETM
Citations

22
checked on Sep 1, 2024

Page view(s)

34
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.