Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/46051
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErkursun Ozcan, Nazife-
dc.contributor.authorGezer, Niyazi Anil-
dc.contributor.authorÖzdemir, Şaziye Ece-
dc.contributor.authorUrganci, Irem Mesude-
dc.date.accessioned2023-01-09T21:08:27Z-
dc.date.available2023-01-09T21:08:27Z-
dc.date.issued2021-
dc.identifier.issn1300-0098-
dc.identifier.issn1303-6149-
dc.identifier.urihttps://doi.org/10.3906/mat-2004-68-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/443226-
dc.identifier.urihttps://hdl.handle.net/11499/46051-
dc.description.abstractWe investigate properties of order compact, unbounded order compact and relatively uniformly compact operators acting on vector lattices. An operator is said to be order compact if it maps an arbitrary order bounded net to a net with an order convergent subnet. Analogously, an operator is said to be unbounded order compact if it maps an arbitrary order bounded net to a net with uo-convergent subnet. After exposing the relationships between order compact, unbounded order compact, semicompact and GAM-compact operators; we study those operators mapping an arbitrary order bounded net to a net with a relatively uniformly convergent subnet. By using the nontopological concepts of order and unbounded order convergences, we derive new results related to these classes of operators. Banach lattices can be equipped with various canonical convergence structures such as order, relatively uniform, unbounded order and unbounded norm convergences. Although some of these convergences are not topological, they share the common property that the underlying order structure plays a dominant role in deriving properties related to operators acting on these lattices. The notion of unbounded order convergence was initially introduced in [13] under the name individual convergence, and, ?uo-convergence? was proposed firstly in [7]. Recently in [4, 6, 8?11, 17], see also the references therein, further properties of various types of unbounded convergences are investigated. In the present paper, we study compactness properties of operators between vector lattices by utilizingen_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK-Project) [118F204]en_US
dc.description.sponsorshipThis work was partially supported by The Scientific and Technological Research Council of Turkey (TUBITAK-Project 118F204). The authors gratefully acknowledge an anonymous referee for useful comments improved the presentation of this paper.en_US
dc.language.isoenen_US
dc.publisherScientific Technical Research Council Turkey-Tubitaken_US
dc.relation.ispartofTurkish Journal Of Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCompact operatoren_US
dc.subjectunbounded order convergenceen_US
dc.subjectvector latticeen_US
dc.subjectConvergenceen_US
dc.titleOrder compact and unbounded order compact operatorsen_US
dc.typeArticleen_US
dc.identifier.volume45en_US
dc.identifier.issue2en_US
dc.identifier.startpage634en_US
dc.identifier.endpage646en_US
dc.identifier.doi10.3906/mat-2004-68-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57194110713-
dc.authorscopusid57205329607-
dc.authorscopusid57197259577-
dc.authorscopusid57222668146-
dc.identifier.scopus2-s2.0-85103700959en_US
dc.identifier.trdizinid443226en_US
dc.identifier.wosWOS:000634389600002en_US
local.message.claim2023-07-12T12:17:54.189+0300|||rp05508|||submit_approve|||dc_contributor_author|||None*
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.