Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/46166
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBozuyla, Mehmet-
dc.contributor.authorOzcift, Akin-
dc.date.accessioned2023-01-09T21:09:43Z-
dc.date.available2023-01-09T21:09:43Z-
dc.date.issued2022-
dc.identifier.issn1300-0632-
dc.identifier.issn1303-6203-
dc.identifier.urihttps://doi.org/10.3906/elk-2106-55-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/529538-
dc.identifier.urihttps://hdl.handle.net/11499/46166-
dc.description.abstractThe massive use of social media causes rapid information dissemination that amplifies harmful messages such as fake news. Fake-news is misleading information presented as factual news that is generally used to manipulate public opinion. In particular, fake news related to COVID-19 is defined as 'infodemic' by World Health Organization. An infodemic is a misleading information that causes confusion which may harm health. There is a high volume of misinformation about COVID-19 that causes panic and high stress. Therefore, the importance of development of COVID-19 related fake news identification model is clear and it is particularly important for Turkish language from COVID-19 fake news identification point of view. In this article, we propose an advanced deep language transformer model to identify the truth of Turkish COVID-19 news from social media. For this aim, we first generated Turkish COVID-19 news from various sources as a benchmark dataset. Then we utilized five conventional machine learning algorithms (i.e. Naive Bayes, Random Forest, K-Nearest Neighbor, Support Vector Machine, Logistic Regression) on top of several language preprocessing tasks. As a next step, we used novel deep learning algorithms such as Long Short -Term Memory, Bi-directional Long-Short-Term-Memory, Convolutional Neural Networks, Gated Recurrent Unit and Bi-directional Gated Recurrent Unit. For further evaluation, we made use of deep learning based language transformers, i.e. Bi-directional Encoder Representations from Transformers and its variations, to improve efficiency of the proposed approach. From the obtained results, we observed that neural transformers, in particular Turkish dedicated transformer BerTURK, is able to identify COVID-19 fake news in 98.5% accuracy.en_US
dc.language.isoenen_US
dc.publisherScientific Technical Research Council Turkey-Tubitaken_US
dc.relation.ispartofTurkish Journal Of Electrical Engineering And Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject&nbspen_US
dc.subjectInfodemicen_US
dc.subjectfake newsen_US
dc.subjectBerTURKen_US
dc.subjectlanguage transformersen_US
dc.subjectmachine learningen_US
dc.subjectCOVID-19en_US
dc.subjectScienceen_US
dc.titleDeveloping a fake news identification model with advanced deep language transformers for Turkish COVID-19 misinformation dataen_US
dc.typeArticleen_US
dc.identifier.volume30en_US
dc.identifier.issue3en_US
dc.identifier.startpage908en_US
dc.identifier.endpage926en_US
dc.identifier.doi10.3906/elk-2106-55-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57202919586-
dc.authorscopusid25654077600-
dc.identifier.scopus2-s2.0-85128276542en_US
dc.identifier.trdizinid529538en_US
dc.identifier.wosWOS:000774599800026en_US
dc.identifier.scopusqualityQ3-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextNo Fulltext-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Oct 13, 2024

WEB OF SCIENCETM
Citations

9
checked on Nov 21, 2024

Page view(s)

52
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.