Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/46245
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzgur, Onder-
dc.contributor.authorAkkoc, Ugur-
dc.date.accessioned2023-01-09T21:10:11Z-
dc.date.available2023-01-09T21:10:11Z-
dc.date.issued2022-
dc.identifier.issn1746-8809-
dc.identifier.issn1746-8817-
dc.identifier.urihttps://doi.org/10.1108/IJOEM-05-2020-0577-
dc.identifier.urihttps://hdl.handle.net/11499/46245-
dc.description.abstractPurpose The main purpose of this study is to forecast inflation rates in the case of the Turkish economy with shrinkage methods of machine learning algorithms. Design/methodology/approach This paper compares the predictive ability of a set of machine learning techniques (ridge, lasso, ada lasso and elastic net) and a group of benchmark specifications (autoregressive integrated moving average (ARIMA) and multivariate vector autoregression (VAR) models) on the extensive dataset. Findings Results suggest that shrinkage methods perform better for variable selection. It is also seen that lasso and elastic net algorithms outperform conventional econometric methods in the case of Turkish inflation. These algorithms choose the energy production variables, construction-sector measure, reel effective exchange rate and money market indicators as the most relevant variables for inflation forecasting. Originality/value Turkish economy that is a typical emerging country has experienced two digit and high volatile inflation regime starting with the year 2017. This study contributes to the literature by introducing the machine learning techniques to forecast inflation in the Turkish economy. The study also compares the relative performance of machine learning techniques and different conventional methods to predict inflation in the Turkish economy and provide the empirical methodology offering the best predictive performance among their counterparts.en_US
dc.language.isoenen_US
dc.publisherEmerald Group Publishing Ltden_US
dc.relation.ispartofInternational Journal Of Emerging Marketsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecastingen_US
dc.subjectEmerging economiesen_US
dc.subjectInflationen_US
dc.subjectProphet modelen_US
dc.subjectShrinkage methodsen_US
dc.subjectPhillips-Curveen_US
dc.subjectModelsen_US
dc.subjectExpectationsen_US
dc.subjectRegressionen_US
dc.subjectMarketen_US
dc.titleInflation forecasting in an emerging economy: selecting variables with machine learning algorithmsen_US
dc.typeArticleen_US
dc.identifier.volume17en_US
dc.identifier.issue8en_US
dc.identifier.startpage1889en_US
dc.identifier.endpage1908en_US
dc.authoridOzgur, Onder/0000-0001-5221-4842-
dc.authoridAKKOC, UGUR/0000-0002-9949-2097-
dc.identifier.doi10.1108/IJOEM-05-2020-0577-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57195606255-
dc.authorscopusid57208190234-
dc.authorwosidOzgur, Onder/AAJ-2362-2021-
dc.identifier.scopus2-s2.0-85100241774en_US
dc.identifier.wosWOS:000616284500001en_US
dc.identifier.scopusqualityQ2-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.dept08.07. International Trade and Finance-
Appears in Collections:İktisadi ve İdari Bilimler Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

9
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

10
checked on Nov 21, 2024

Page view(s)

56
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.