Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/46300
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇelik, Ibrahim-
dc.date.accessioned2023-01-09T21:10:33Z-
dc.date.available2023-01-09T21:10:33Z-
dc.date.issued2022-
dc.identifier.issn0177-0667-
dc.identifier.issn1435-5663-
dc.identifier.urihttps://doi.org/10.1007/s00366-020-01279-2-
dc.identifier.urihttps://hdl.handle.net/11499/46300-
dc.description.abstractMatrices representations of integrations of wavelets have a major role to obtain approximate solutions of integral, differential and integro-differential equations. In the present work, operational matrix representation of rth integration of Jacobi wavelets is introduced and to find these operational matrices, all details of the processes are demonstrated for the first time. Error analysis of offered method is also investigated in present study. In the planned method, approximate solutions are constructed with the truncated Jacobi wavelets series. Approximate solutions of the modified Camassa-Holm equation and Degasperis-Procesi equation linearized using quasilinearization technique are obtained by presented method. Applicability and accuracy of presented method is demonstrated by examples. The proposed method is also convergent even when a minor number of grid points. The numerical results obtained by offered technique are compatible with those in the literature.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofEngineering With Computersen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectJacobi waveletsen_US
dc.subjectNonlinear modified Camassa–en_US
dc.subjectHolm and Degasperis–en_US
dc.subjectProcesi equationsen_US
dc.subjectConvergenceen_US
dc.subjectQuasilinearization techniqueen_US
dc.subjectCollocation methoden_US
dc.subjectApproximate solutionen_US
dc.titleJacobi wavelet collocation method for the modified Camassa-Holm and Degasperis-Procesi equationsen_US
dc.typeArticleen_US
dc.identifier.volume38en_US
dc.identifier.issueSUPPL 3en_US
dc.identifier.startpage2271en_US
dc.identifier.endpage2287en_US
dc.authoridçelik, ibrahim/0000-0003-0398-9304-
dc.identifier.doi10.1007/s00366-020-01279-2-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid56232262900-
dc.authorwosidçelik, ibrahim/R-2465-2019-
dc.identifier.scopus2-s2.0-85103194126en_US
dc.identifier.wosWOS:000632808100002en_US
local.message.claim2023-07-11T21:14:19.096+0300|||rp00394|||submit_approve|||dc_contributor_author|||None*
dc.identifier.scopusqualityQ1-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 21, 2024

Page view(s)

48
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.