Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/46478
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSenturk, Fatmana-
dc.contributor.authorGunduz, Gurhan-
dc.date.accessioned2023-01-09T21:11:58Z-
dc.date.available2023-01-09T21:11:58Z-
dc.date.issued2022-
dc.identifier.issn1532-0626-
dc.identifier.issn1532-0634-
dc.identifier.urihttps://doi.org/10.1002/cpe.6562-
dc.identifier.urihttps://hdl.handle.net/11499/46478-
dc.description.abstractBig data attracts the attention of governments and a lot of companies today. The developments in technology and the Internet make it one of the important sources of big data. It is easy to get lost in the enormous amount of information contained on the Internet if there were no search engines. Knowing how the search engines work will be helpful to access the desired information. This work aims to be a guide for accessing the right information and also to help to understand search engine stemming and indexing algorithm for interested parties. In this article, we have developed a framework that could be used to investigate the stemming mechanisms of search engines. Our framework also uses Word2vec to analyze semantic relations. We have used our framework to investigate the stemming algorithm of the search engine Bing for English language. In order to achieve that we have used this framework to select words, create queries, send them to Bing, and finally analyze the millions of returned results. We have discussed the results in the context of our article. The results indicate that our framework is useful for analyzing the stemming mechanisms of search engines.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofConcurrency And Computation-Practice & Experienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbig dataen_US
dc.subjectBingen_US
dc.subjectindexing mechanismen_US
dc.subjectinformation retrievalen_US
dc.subjectsearch engineen_US
dc.subjectstemmingen_US
dc.subjectQualityen_US
dc.subjectWeben_US
dc.subjectBigen_US
dc.titleA framework for investigating search engines' stemming mechanisms: A case study on Bingen_US
dc.typeArticleen_US
dc.identifier.volume34en_US
dc.identifier.issue9en_US
dc.authoridSenturk, Fatmana/0000-0002-5548-6015-
dc.authoridGunduz, Gurhan/0000-0002-0719-2688-
dc.identifier.doi10.1002/cpe.6562-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57062960200-
dc.authorscopusid7003405823-
dc.authorwosidŞentürk, Fatmana/AAI-1063-2021-
dc.identifier.scopus2-s2.0-85112182988en_US
dc.identifier.wosWOS:000683876000001en_US
dc.identifier.scopusqualityQ3-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 21, 2024

Page view(s)

46
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.