Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/46533
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCetin, Meric-
dc.contributor.authorBeyhan, Selami-
dc.date.accessioned2023-01-09T21:12:28Z-
dc.date.available2023-01-09T21:12:28Z-
dc.date.issued2022-
dc.identifier.issn0941-0643-
dc.identifier.issn1433-3058-
dc.identifier.urihttps://doi.org/10.1007/s00521-021-06410-y-
dc.identifier.urihttps://hdl.handle.net/11499/46533-
dc.description.abstractMathematical model-based analysis and control of human immunodeficiency virus (HIV) infection have recently provided important advantages in medicine. In this paper, firstly the literature on mathematical models and applied control methods will be surveyed to evaluate the HIV models and therapy. Secondly, a cubature Kalman filter-based nonlinear model predictive control is proposed for the multi-input multi-output control of HIV infection for decreasing the cost of sensory devices and increasing the efficiency of therapy. By doing so both unmeasurable states and personalized parameters of the HIV infection are jointly estimated in a control process to generate suitable drug dosages. In the literature, the applied drug dosages are in continuous or on/off levels. For a practical application of continuous drug dosage-level, it has been discretized into 10 levels of full dosage level. Therefore, the applied drug dosages are in piecewise-continuous levels instead of continuous values or on/off levels. The proposed observer-controller configuration has been applied to the strong and moderate therapy levels of long-term non-progressive as well as fast-progressive patients with personalized parameters, where the application results are discussed for 1-, 5-, 10- and 20-year periods. The computational results show that satisfactory performances are obtained for future applications in terms of the root-mean-squared error of the estimation and control, and in terms of the integral sum of the control input.en_US
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.ispartofNeural Computing & Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHIV therapyen_US
dc.subjectNonlinear model predictive controlen_US
dc.subjectCubature Kalman filteren_US
dc.subjectJoint state and parameter estimationen_US
dc.subjectLong-term strong therapyen_US
dc.subjectLong-term moderate therapyen_US
dc.subjectStochastic-Modelen_US
dc.subjectFeedback-Controlen_US
dc.subjectDynamicsen_US
dc.subjectIdentificationen_US
dc.subjectChemotherapyen_US
dc.subjectIdentifiabilityen_US
dc.subjectPathogenesisen_US
dc.subjectReservoiren_US
dc.subjectSystemsen_US
dc.subjectHaarten_US
dc.titleLong-term analysis of HIV infection therapy with cubature Kalman filtering-based predictive controlen_US
dc.typeArticleen_US
dc.identifier.volume34en_US
dc.identifier.issue3en_US
dc.identifier.startpage2133en_US
dc.identifier.endpage2155en_US
dc.authoridCetin, Meric/0000-0002-7871-4850-
dc.identifier.doi10.1007/s00521-021-06410-y-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid56692287800-
dc.authorscopusid34267481700-
dc.authorwosidCetin, Meric/ABG-1475-2021-
dc.identifier.scopus2-s2.0-85115603619en_US
dc.identifier.wosWOS:000698886400005en_US
dc.identifier.scopusqualityQ1-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.dept10.10. Computer Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 22, 2024

Page view(s)

54
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.