Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/46561
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYigit, Ravza Nur-
dc.contributor.authorHaldenbilen, Soner-
dc.date.accessioned2023-01-09T21:15:23Z-
dc.date.available2023-01-09T21:15:23Z-
dc.date.issued2021-
dc.identifier.issn1300-3453-
dc.identifier.urihttps://doi.org/10.18400/tekderg.713080-
dc.identifier.urihttps://hdl.handle.net/11499/46561-
dc.description.abstractIn the study, the effect of parametric and nonparametric methods on short-term traffic prediction and intersection cycle length and performance were investigated. According to the data of the intersection, it is aimed to improve the delay times and reduce the intersection waiting times and improve the intersection performance. The methods were applied, for example, to the Mimar Sinan intersection of Denizli. The data obtained with the help of sensors located in the approach arms of the intersection are arranged as data sets. Short-term traffic prediction has been made with auto-regressive integrated moving average (ARIMA) and artificial neural networks (ANN) methods. Estimation results the intersection cycle length optimization was made using the Webster method. After calculating the optimum cycle length and green times, the lag values of the Webster delay method and intersection approach arms and the intersection general were compared with the estimated results obtained from both the ARIMA method and the ANN method. In the short-term traffic prediction, the results obtained using the ANN method were found to be more successful than the results obtained with the ARIMA method.en_US
dc.language.isotren_US
dc.publisherTurkish Chamber Civil Engineersen_US
dc.relation.ispartofTeknik Dergien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTraffic volume estimationen_US
dc.subjectARIMAen_US
dc.subjectANNen_US
dc.subjectWebsteren_US
dc.subjectTime-Seriesen_US
dc.titleOptimization of Cycle Length with Short Term Traffic Prediction and Delay Analysisen_US
dc.typeArticleen_US
dc.identifier.volume32en_US
dc.identifier.issue5en_US
dc.identifier.startpage11097en_US
dc.identifier.endpage11125en_US
dc.identifier.doi10.18400/tekderg.713080-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57302916800-
dc.authorscopusid8515229000-
dc.identifier.scopus2-s2.0-85117442518en_US
dc.identifier.wosWOS:000715342100002en_US
dc.identifier.scopusqualityQ4-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.grantfulltextopen-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
10.18400-tekderg.713080-1090148.pdf2.08 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

70
checked on Aug 24, 2024

Download(s)

40
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.