Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/46653
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCelik, Sefer Beran-
dc.contributor.authorCobanoglu, Ibrahim-
dc.date.accessioned2023-01-09T21:15:37Z-
dc.date.available2023-01-09T21:15:37Z-
dc.date.issued2022-
dc.identifier.issn2352-7102-
dc.identifier.urihttps://doi.org/10.1016/j.jobe.2021.103443-
dc.identifier.urihttps://hdl.handle.net/11499/46653-
dc.description.abstractThe Wide Wheel is a recent abrasion test method (WA) proposed for building stones. The WA test is carried out by special equipment using abrasive dust on prismatic building stone samples. The purpose of this study is providing a methodology for practical estimation of the WA values from dry unit weight (gamma), open porosity (P-O), P-wave velocity (VP) and uniaxial compressive strength (UCS) values. In the study, test data from previous studies were compiled. Multivariate regression analyses (MLR), Feed Forward Back Propagated (FFBP) and Generalized Regression Neural Networks (GRNN) algorithms of Artificial Neural Networks (ANNs) were employed in the analyses. Equations by MLR analyses to estimate the WA values for 5 models were proposed. Then, FFBP and GRNN analyses were performed, and their prediction performance results were assessed. All five models were determined to be strong enough to be used in practice, although FFBP and GRNN are found to be stronger in prediction capability than the MLR method.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal Of Building Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNatural building stonesen_US
dc.subjectAbrasion resistanceen_US
dc.subjectMultivariate regressionen_US
dc.subjectFeed forward back propagated neural networksen_US
dc.subjectGeneralized regression neural networksen_US
dc.subjectCompressive Strengthen_US
dc.subjectPredictionen_US
dc.subjectTravertineen_US
dc.subjectRocksen_US
dc.subjectParametersen_US
dc.subjectUsabilityen_US
dc.subjectModulusen_US
dc.subjectCaponen_US
dc.subjectIndexen_US
dc.titleModelling and estimation of Wide Wheel abrasion values of building stones by multivariate regression and artificial neural network analysesen_US
dc.typeArticleen_US
dc.identifier.volume45en_US
dc.identifier.doi10.1016/j.jobe.2021.103443-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid24175520800-
dc.authorscopusid6506218464-
dc.identifier.scopus2-s2.0-85122513481en_US
dc.identifier.wosWOS:000711452200001en_US
dc.identifier.scopusqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.cerifentitytypePublications-
crisitem.author.dept10.08. Geological Engineering-
crisitem.author.dept10.08. Geological Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

9
checked on Nov 21, 2024

Page view(s)

42
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.