Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/46696
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBeyhan, Selami-
dc.contributor.authorCetin, Meric-
dc.date.accessioned2023-01-09T21:15:46Z-
dc.date.available2023-01-09T21:15:46Z-
dc.date.issued2022-
dc.identifier.issn0960-0779-
dc.identifier.issn1873-2887-
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2022.111898-
dc.identifier.urihttps://hdl.handle.net/11499/46696-
dc.description.abstractIn this paper, a second-order hyperparameter tuning method is proposed to improve the performance of online gradient-descent optimization. Second-order gradient information of a cost function obtained from extremum seeking optimization is embedded into the adaptation of states and parameters. Thus, a faster adaptation capability is provided without computing the inverse Hessian matrix. The convergence property of the adaptation dynamics via proposed hyperparameter is shown using Lyapunov approach. The proposed hyperparameters and conventional learning rates are compared in numerical applications of model-based estimation and adaptive estimation as follows: i) model-based synchronization of chaotic Lu-systems with time-varying parameters is performed by using an efficient nonlinear observer, ii) an adaptive fuzzy neural-network observer based state estimation is conducted for unknown Duffing oscil-lator. In both cases, online gradient-descent adaptations are boosted using the proposed hyperparameter and conventional learning rates and their capabilities are measured in terms of root-mean squared-error performance. As a result, the proposed hyperparameter tuning method presented more accurate perfor-mances where application results are illustrated in figures and in a table.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofChaos Solitons & Fractalsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectExtremum seeking optimizationen_US
dc.subjectHyperparameter tuningen_US
dc.subjectSynchronizationen_US
dc.subjectAdaptive state estimationen_US
dc.subjectStabilityen_US
dc.subjectLearning Rateen_US
dc.subjectSynchronizationen_US
dc.subjectIdentificationen_US
dc.subjectConvergenceen_US
dc.titleSecond-order hyperparameter tuning of model-based and adaptive observers for time-varying and unknown chaotic systemsen_US
dc.typeArticleen_US
dc.identifier.volume156en_US
dc.identifier.doi10.1016/j.chaos.2022.111898-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid34267481700-
dc.authorscopusid56692287800-
dc.identifier.scopus2-s2.0-85124490607en_US
dc.identifier.wosWOS:000783049200007en_US
dc.identifier.scopusqualityQ3-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 21, 2024

Page view(s)

36
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.