Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/46801
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOztas, Gulin Zeynep-
dc.contributor.authorErdem, Sabri-
dc.date.accessioned2023-01-09T21:16:12Z-
dc.date.available2023-01-09T21:16:12Z-
dc.date.issued2022-
dc.identifier.issn0965-9978-
dc.identifier.issn1873-5339-
dc.identifier.urihttps://doi.org/10.1016/j.advengsoft.2022.103141-
dc.identifier.urihttp://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/46801-
dc.description.abstractConventional random search techniques take a lot of time to reach optimum-like solutions. Thus, random search techniques with advanced competencies play an essential role in algorithms. In this study, we develop an algorithm that provides an adaptive initial solution, to some extent reducing the diversity of randomness in the initialization of the algorithms for continuous unconstrained/bounded nonlinear optimization problems. The algorithm meets this expectation by narrowing search space adaptively without trapping into local optimums. It also escapes from eliminating accidentally global optimum in multi-modal problems. For this reason, we configure the proposed algorithm on the principle of updating given upper-lower boundaries dynamically. It is worth mentioning that this procedure does not add an additional burden to existing solution methods; on the contrary, it contributes to problem-solving in terms of time and efficiency. To show its performance, we have incorporated with most frequently used unconstrained/bounded benchmarks and compared them with the solutions in the literature. In conclusion, the proposed algorithm converges solutions quickly and is applicable for later usage in further studies.en_US
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofAdvances In Engineering Softwareen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMetaheuristicsen_US
dc.subjectInitial solution methodsen_US
dc.subjectAdaptive random searchen_US
dc.subjectUnconstrained optimization problemsen_US
dc.subjectOptimizationen_US
dc.titleRandom search with adaptive boundaries algorithm for obtaining better initial solutionsen_US
dc.typeArticleen_US
dc.identifier.volume169en_US
dc.authoridOZTAS, GULIN ZEYNEP/0000-0002-6901-6559-
dc.authoridErdem, Sabri/0000-0001-6766-3202-
dc.identifier.doi10.1016/j.advengsoft.2022.103141-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57189892508-
dc.authorscopusid53663400100-
dc.authorwosidErdem, Sabri/N-6239-2014-
dc.identifier.scopus2-s2.0-85130097079en_US
dc.identifier.wosWOS:000830273800006en_US
local.message.claim2023-06-06T21:42:28.703+0300|||rp02814|||submit_approve|||dc_contributor_author|||None*
dc.identifier.scopusqualityQ1-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept08.04. Business Administration-
Appears in Collections:İktisadi ve İdari Bilimler Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 16, 2024

Page view(s)

46
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.