Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4685
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMurat, Yetiş Şazi-
dc.date.accessioned2019-08-16T11:36:16Z-
dc.date.available2019-08-16T11:36:16Z-
dc.date.issued2006-
dc.identifier.issn0968-090X-
dc.identifier.urihttps://hdl.handle.net/11499/4685-
dc.identifier.urihttps://doi.org/10.1016/j.trc.2006.08.003-
dc.description.abstractModeling vehicle delay has been an interesting subject for traffic engineers and urban planners. Determination of vehicle delay is a complex task and the delay is influenced by many variables that have uncertainties and vagueness, especially for non-uniform or over-saturated conditions. In this study, vehicle delay is modeled using new approaches such as Fuzzy Logic (FL) and Artificial Neural Networks (ANN) to deal with all conditions. The Neuro Fuzzy Delay Estimation (NFDE) model and Artificial Neural Networks Delay Estimation (ANNDE) model are developed. The overall delay data required for the model were collected from ten signalized intersections in Turkey. The results of the developed models are compared with the Highway Capacity Manual (HCM), Akçelik's methods and the delay data collected from intersections. The results showed that delay estimations by the ANNDE and NFDE model are promising. It is also inferred that the NFDE model results are the best fitted. The Average Relative Error (ARE) rates of NFDE model are determined as 7% for under-saturated and 5% for over-saturated conditions. The results reflect the fact that the neuro-fuzzy approach may be used as a promising method in vehicle delay estimation. © 2006 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofTransportation Research Part C: Emerging Technologiesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectDelayen_US
dc.subjectFuzzy logicen_US
dc.subjectJunctionsen_US
dc.subjectmodelen_US
dc.subjectSignalizationen_US
dc.subjectTraffic flowsen_US
dc.subjectFuzzy setsen_US
dc.subjectIntersectionsen_US
dc.subjectMathematical modelsen_US
dc.subjectNeural networksen_US
dc.subjectTraffic signalsen_US
dc.subjectArtificial neural networks delay estimation (ANNDE)en_US
dc.subjectAverage relative error (ARE)en_US
dc.subjectNeuro fuzzy delay estimation (NFDE)en_US
dc.subjectVehicle delay modelingen_US
dc.subjectTraffic surveysen_US
dc.subjectartificial neural networken_US
dc.subjectfuzzy mathematicsen_US
dc.subjectmodelingen_US
dc.subjecttraffic managementen_US
dc.subjecttravel timeen_US
dc.subjectuncertainty analysisen_US
dc.subjectEurasiaen_US
dc.subjectTurkeyen_US
dc.titleComparison of fuzzy logic and artificial neural networks approaches in vehicle delay modelingen_US
dc.typeArticleen_US
dc.identifier.volume14en_US
dc.identifier.issue5en_US
dc.identifier.startpage316-
dc.identifier.startpage316en_US
dc.identifier.endpage334en_US
dc.identifier.doi10.1016/j.trc.2006.08.003-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-33750314167en_US
dc.identifier.wosWOS:000242311500002en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

53
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

47
checked on Nov 21, 2024

Page view(s)

124
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.