Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4686
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİplikçi, Serdar-
dc.date.accessioned2019-08-16T11:36:17Z
dc.date.available2019-08-16T11:36:17Z
dc.date.issued2006-
dc.identifier.issn0916-8508-
dc.identifier.urihttps://hdl.handle.net/11499/4686-
dc.identifier.urihttps://doi.org/10.1093/ietfec/e89-a.10.2787-
dc.description.abstractThis work presents an application of the previously proposed Support Vector Machines Based Generalized Predictive Control (SVM-Based GPC) method [1] to the problem of controlling chaotic dynamics with small parameter perturbations. The Generalized Predictive Control (GPC) method, which is included in the class of Model Predictive Control, necessitates an accurate model of the plant that plays very crucial role in the control loop. On the other hand, chaotic systems exhibit very complex behavior peculiar to them and thus it is considerably difficult task to get their accurate model in the whole phase space. In this work, the Support Vector Machines (SVMs) regression algorithm is used to obtain an acceptable model of a chaotic system to be controlled. SVM-Based GPC exploits some advantages of the SVM approach and utilizes the obtained model in the GPC structure. Simulation results on several chaotic systems indicate that the SVM-Based GPC scheme provides an excellent performance with respect to local stabilization of the target (an originally unstable equilibrium point). Furthermore, it somewhat performs targeting, the task of steering the chaotic system towards the target by applying relatively small parameter perturbations. It considerably reduces the waiting time until the system, starting from random initial conditions, enters the local control region, a small neighborhood of the chosen target. Moreover, SVM-Based GPC maintains its performance in the case that the measured output is corrupted by an additive Gaussian noise. Copyright © 2006 The Institute of Electronics, Information and Communication Engineers.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electronics, Information and Communication, Engineers, IEICEen_US
dc.relation.ispartofIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChaos controlen_US
dc.subjectGeneralized predictive controlen_US
dc.subjectModeling and predictionen_US
dc.subjectSupport vector machinesen_US
dc.subjectChaos theoryen_US
dc.subjectGaussian noise (electronic)en_US
dc.subjectMathematical modelsen_US
dc.subjectParameter estimationen_US
dc.subjectPerturbation techniquesen_US
dc.subjectVectorsen_US
dc.subjectGeneralized Predictive Control (GPC)en_US
dc.subjectSupport vector machines (SVM)en_US
dc.subjectPredictive control systemsen_US
dc.titleSupport vector machines based generalized predictive control of chaotic systemsen_US
dc.typeConference Objecten_US
dc.identifier.volumeE89-Aen_US
dc.identifier.issue10en_US
dc.identifier.startpage2787
dc.identifier.startpage2787en_US
dc.identifier.endpage2794en_US
dc.authorid0000-0003-3806-1442-
dc.identifier.doi10.1093/ietfec/e89-a.10.2787-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-33750037347en_US
dc.identifier.wosWOS:000241305800045en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale_University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeConference Object-
item.grantfulltextnone-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 16, 2024

Page view(s)

36
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.