Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/46877
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKoek, Ibrahim-
dc.contributor.authoroezdemir, Suat-
dc.date.accessioned2023-01-09T21:16:38Z-
dc.date.available2023-01-09T21:16:38Z-
dc.date.issued2022-
dc.identifier.issn1574-1192-
dc.identifier.issn1873-1589-
dc.identifier.urihttps://doi.org/10.1016/j.pmcj.2022.101654-
dc.identifier.urihttps://hdl.handle.net/11499/46877-
dc.description.abstractFog Computing (FC) based IoT applications are encountering a bottleneck in the data management and resource optimization due to the dynamic IoT topologies, resource-limited devices, resource diversity, mismatching service quality, and complicated service offering environments. Existing problems and emerging demands of FC based IoT applications are hard to be met by traditional IP-based Internet model. Therefore, in this paper, we focus on the Content-Centric Network (CCN) model to provide more efficient, flexible, and reliable data and resource management for fog-based IoT systems. We first propose a Deep Reinforcement Learning (DRL) algorithm that jointly considers the content type and status of fog servers for content-centric data and computation offloading. Then, we introduce a novel virtual layer called FogOrch that orchestrates the management and performance requirements of fog layer resources in an efficient manner via the proposed DRL agent. To show the feasibility of FogOrch, we develop a content-centric data offloading scheme (DRLOS) based on the DRL algorithm running on FogOrch. Through extensive simulations, we evaluate the performance of DRLOS in terms of total reward, computational workload, computation cost, and delay. The results show that the proposed DRLOS is superior to existing benchmark offloading schemes.(c) 2022 Elsevier B.V. All rights reserved.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey [118E212]en_US
dc.description.sponsorshipAcknowledgments This work is supported by the Scientific and Technological Research Council of Turkey under Grant no 118E212.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofPervasive And Mobile Computingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNext Generation Internet of Things (NGIoT)en_US
dc.subjectDeep reinforcement learningen_US
dc.subjectFogOrchen_US
dc.subjectFog computingen_US
dc.subjectData offloadingen_US
dc.subjectComputation offloadingen_US
dc.subjectResource-Allocationen_US
dc.subjectMobile Edgeen_US
dc.subjectJoint Optimizationen_US
dc.subjectBig Dataen_US
dc.subjectReinforcementen_US
dc.subjectRadioen_US
dc.subjectAnalyticsen_US
dc.subjectInterneten_US
dc.subjectSchemeen_US
dc.subjectAwareen_US
dc.titleContent-centric data and computation offloading in AI-supported fog networks for next generation IoTen_US
dc.typeArticleen_US
dc.identifier.volume85en_US
dc.authoridkök, ibrahim/0000-0001-9787-8079-
dc.identifier.doi10.1016/j.pmcj.2022.101654-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57200283688-
dc.authorscopusid23467461900-
dc.authorwosidkök, ibrahim/AAR-2061-2020-
dc.identifier.scopus2-s2.0-85135113005en_US
dc.identifier.wosWOS:000855578800009en_US
dc.identifier.scopusqualityQ1-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 22, 2024

Page view(s)

30
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.