Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/46877
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Koek, Ibrahim | - |
dc.contributor.author | oezdemir, Suat | - |
dc.date.accessioned | 2023-01-09T21:16:38Z | - |
dc.date.available | 2023-01-09T21:16:38Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 1574-1192 | - |
dc.identifier.issn | 1873-1589 | - |
dc.identifier.uri | https://doi.org/10.1016/j.pmcj.2022.101654 | - |
dc.identifier.uri | https://hdl.handle.net/11499/46877 | - |
dc.description.abstract | Fog Computing (FC) based IoT applications are encountering a bottleneck in the data management and resource optimization due to the dynamic IoT topologies, resource-limited devices, resource diversity, mismatching service quality, and complicated service offering environments. Existing problems and emerging demands of FC based IoT applications are hard to be met by traditional IP-based Internet model. Therefore, in this paper, we focus on the Content-Centric Network (CCN) model to provide more efficient, flexible, and reliable data and resource management for fog-based IoT systems. We first propose a Deep Reinforcement Learning (DRL) algorithm that jointly considers the content type and status of fog servers for content-centric data and computation offloading. Then, we introduce a novel virtual layer called FogOrch that orchestrates the management and performance requirements of fog layer resources in an efficient manner via the proposed DRL agent. To show the feasibility of FogOrch, we develop a content-centric data offloading scheme (DRLOS) based on the DRL algorithm running on FogOrch. Through extensive simulations, we evaluate the performance of DRLOS in terms of total reward, computational workload, computation cost, and delay. The results show that the proposed DRLOS is superior to existing benchmark offloading schemes.(c) 2022 Elsevier B.V. All rights reserved. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey [118E212] | en_US |
dc.description.sponsorship | Acknowledgments This work is supported by the Scientific and Technological Research Council of Turkey under Grant no 118E212. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Pervasive And Mobile Computing | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Next Generation Internet of Things (NGIoT) | en_US |
dc.subject | Deep reinforcement learning | en_US |
dc.subject | FogOrch | en_US |
dc.subject | Fog computing | en_US |
dc.subject | Data offloading | en_US |
dc.subject | Computation offloading | en_US |
dc.subject | Resource-Allocation | en_US |
dc.subject | Mobile Edge | en_US |
dc.subject | Joint Optimization | en_US |
dc.subject | Big Data | en_US |
dc.subject | Reinforcement | en_US |
dc.subject | Radio | en_US |
dc.subject | Analytics | en_US |
dc.subject | Internet | en_US |
dc.subject | Scheme | en_US |
dc.subject | Aware | en_US |
dc.title | Content-centric data and computation offloading in AI-supported fog networks for next generation IoT | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 85 | en_US |
dc.authorid | kök, ibrahim/0000-0001-9787-8079 | - |
dc.identifier.doi | 10.1016/j.pmcj.2022.101654 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.authorscopusid | 57200283688 | - |
dc.authorscopusid | 23467461900 | - |
dc.authorwosid | kök, ibrahim/AAR-2061-2020 | - |
dc.identifier.scopus | 2-s2.0-85135113005 | en_US |
dc.identifier.wos | WOS:000855578800009 | en_US |
dc.identifier.scopusquality | Q1 | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
crisitem.author.dept | 10.10. Computer Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
7
checked on Nov 23, 2024
WEB OF SCIENCETM
Citations
3
checked on Nov 22, 2024
Page view(s)
30
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.