Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4702
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKızılkaya, Aydın-
dc.contributor.authorKayran, Ahmet Hamdi-
dc.date.accessioned2019-08-16T11:36:26Z
dc.date.available2019-08-16T11:36:26Z
dc.date.issued2006-
dc.identifier.issn1051-2004-
dc.identifier.urihttps://hdl.handle.net/11499/4702-
dc.identifier.urihttps://doi.org/10.1016/j.dsp.2006.08.010-
dc.description.abstractThe paper investigates the relation between the parameters of an autoregressive moving average (ARMA) model and its equivalent moving average (EMA) model. On the basis of this relation, a new method is proposed for determining the ARMA model parameters from the coefficients of a finite-order EMA model. This method is a three-step approach: in the first step, a simple recursion relating the EMA model parameters and the cepstral coefficients of an ARMA process is derived to estimate the EMA model parameters; in the second step, the AR parameters are estimated by solving the linear equation set composed of EMA parameters; then, the MA parameters are obtained via simple computations using the estimated EMA and AR parameters. Simulations including both low- and high-order ARMA processes are given to demonstrate the performance of the new method. The end results are compared with the existing method in the literature over some performance criteria. It is observed from the simulations that our new algorithm produces the satisfactory and acceptable results. © 2006 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Inc.en_US
dc.relation.ispartofDigital Signal Processing: A Review Journalen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectARMA model parameter estimationen_US
dc.subjectEquivalent MA modelen_US
dc.subjectEquivalent model approachen_US
dc.subjectMA-cepstrum recursionen_US
dc.subjectSpectral estimationen_US
dc.subjectComputer simulationen_US
dc.subjectMathematical modelsen_US
dc.subjectParameter estimationen_US
dc.subjectSpectrum analysisen_US
dc.subjectAutoregressive moving average (ARMA) modelsen_US
dc.subjectCepstrum recursionen_US
dc.subjectEquivalent moving average (EMA) modelsen_US
dc.subjectSignal filtering and predictionen_US
dc.titleARMA model parameter estimation based on the equivalent MA approachen_US
dc.typeArticleen_US
dc.identifier.volume16en_US
dc.identifier.issue6en_US
dc.identifier.startpage670
dc.identifier.startpage670en_US
dc.identifier.endpage681en_US
dc.authorid0000-0001-8361-9738-
dc.identifier.doi10.1016/j.dsp.2006.08.010-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-33751175843en_US
dc.identifier.wosWOS:000243346900003en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale_University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

29
checked on Sep 1, 2024

WEB OF SCIENCETM
Citations

28
checked on Sep 1, 2024

Page view(s)

38
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.