Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/47360
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOztas G.Z.-
dc.contributor.authorErdem S.-
dc.date.accessioned2023-01-09T21:24:08Z-
dc.date.available2023-01-09T21:24:08Z-
dc.date.issued2023-
dc.identifier.issn0941-0643-
dc.identifier.urihttps://doi.org/10.1007/s00521-022-08058-8-
dc.identifier.urihttps://hdl.handle.net/11499/47360-
dc.description.abstractThis paper presents a population-based evolutionary computation model for solving continuous constrained nonlinear optimization problems. The primary goal is achieving better solutions in a specific problem type, regardless of metaphors and similarities. The proposed algorithm assumes that candidate solutions interact with each other to have better fitness values. The interaction between candidate solutions is limited with the closest neighbors by considering the Euclidean distance. Furthermore, Tabu Search Algorithm and Elitism selection approach inspire the memory usage of the proposed algorithm. Besides, this algorithm is structured on the principle of the multiplicative penalty approach that considers satisfaction rates, the total deviations of constraints, and the objective function value to handle continuous constrained problems very well. The performance of the algorithm is evaluated with real-world engineering design optimization benchmark problems that belong to the most used cases by evolutionary optimization researchers. Experimental results show that the proposed algorithm produces satisfactory results compared to the other algorithms published in the literature. The primary purpose of this study is to provide an algorithm that reaches the best-known solution values rather than duplicating existing algorithms through a new metaphor. We constructed the proposed algorithm with the best combination of features to achieve better solutions. Different from similar algorithms, constrained engineering problems are handled in this study. Thus, it aims to prove that the proposed algorithm gives better results than similar algorithms and other algorithms developed in the literature. © 2022, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectConstrained nonlinear optimizationen_US
dc.subjectEngineering benchmark problemsen_US
dc.subjectEvolutionary computationen_US
dc.subjectMetaheuristicsen_US
dc.subjectNatural factsen_US
dc.subjectNature-inspired optimization algorithmsen_US
dc.subjectBenchmarkingen_US
dc.subjectBiomimeticsen_US
dc.subjectConstrained optimizationen_US
dc.subjectConstraint satisfaction problemsen_US
dc.subjectNonlinear programmingen_US
dc.subjectTabu searchen_US
dc.subjectBenchmark problemsen_US
dc.subjectComputation modelen_US
dc.subjectConstrained nonlinear optimizationen_US
dc.subjectEngineering benchmark problemen_US
dc.subjectEngineering optimization problemsen_US
dc.subjectMetaheuristicen_US
dc.subjectNatural facten_US
dc.subjectNature-inspired optimization algorithmen_US
dc.subjectNonlinear optimization problemsen_US
dc.subjectOptimization algorithmsen_US
dc.subjectEvolutionary algorithmsen_US
dc.titleA penalty-based algorithm proposal for engineering optimization problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00521-022-08058-8-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57189892508-
dc.authorscopusid53663400100-
dc.identifier.pmid36532880en_US
dc.identifier.scopus2-s2.0-85143495187en_US
dc.identifier.wosWOS:000896514100009en_US
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept08.04. Business Administration-
Appears in Collections:İktisadi ve İdari Bilimler Fakültesi Koleksiyonu
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
s00521-022-08058-8.pdf1.77 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.