Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/47400
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOrhan U.-
dc.contributor.authorTosun E.G.-
dc.contributor.authorOzkaya O.-
dc.date.accessioned2023-01-09T21:24:22Z-
dc.date.available2023-01-09T21:24:22Z-
dc.date.issued2023-
dc.identifier.issn2193-567X-
dc.identifier.urihttps://doi.org/10.1007/s13369-022-07016-9-
dc.identifier.urihttps://hdl.handle.net/11499/47400-
dc.description.abstractIn this study, a new approach called Contextualized Deep SemSpace is proposed for intent detection. First, the synset vectors are determined by training the generalized SemSpace method with the WordNet 3.1 data. Then, each word in an intent dataset is transformed into a synset vector by a contextualized approach, and finally, the synset vectors are trained with a deep learning model using BLSTM. Since the proposed approach adapts the contextualized semantic vectors to the dataset with a deep learning model, it treats like one of contextualized deep embeddings like BERT, ELMo, and GPT-3 methods. In order to measure the success of the proposed approach, some experiments have been carried out on six well-known intent detection benchmark datasets (ATIS, Snips, Facebook, Ask Ubuntu, WebApp, and Chatbot). Although the dependence of its vocabulary on WordNet causes a serious number of out of vocabulary problems, results showed that the proposed approach is the most successful intent classifier in the literature. According to these results, it can be said that deep learning-based contextualized synset vectors can be used successfully in many problems. © 2022, King Fahd University of Petroleum & Minerals.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofArabian Journal for Science and Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBidirectional long short-term memoryen_US
dc.subjectGeneralized SemSpaceen_US
dc.subjectIntent detectionen_US
dc.subjectNatural language understandingen_US
dc.subjectSynset vectorsen_US
dc.subjectWordNeten_US
dc.titleIntent Detection Using Contextualized Deep SemSpaceen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s13369-022-07016-9-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid25121685900-
dc.authorscopusid57817213600-
dc.authorscopusid57221870459-
dc.identifier.scopus2-s2.0-85134803825en_US
dc.identifier.wosWOS:000830278400003en_US
dc.identifier.scopusqualityQ1-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept28.06. Department Of information Technology-
Appears in Collections:Bilgi İşlem Daire Başkanlığı Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.