Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/47404
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | İmamoğlu Karabaş N. | - |
dc.contributor.author | Korkut S.Ö. | - |
dc.contributor.author | Gurarslan G. | - |
dc.contributor.author | Tanoğlu G. | - |
dc.date.accessioned | 2023-01-09T21:24:23Z | - |
dc.date.available | 2023-01-09T21:24:23Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 2238-3603 | - |
dc.identifier.uri | https://doi.org/10.1007/s40314-022-01927-x | - |
dc.identifier.uri | https://hdl.handle.net/11499/47404 | - |
dc.description.abstract | In the presented study, the hyperbolic telegraph equation is taken as the focus point. To solve such an equation, an accurate, reliable, and efficient method has been proposed. The developed method is mainly based on the combination of a kind of mesh-free method and an adaptive method. Multiquadric radial basis function mesh-free method is considered on spatial domain and the adaptive fifth-order Runge–Kutta method is used on time domain. The validity and the performance of the proposed method have been checked on several test problems. The approximate solutions are compared with the exact solution, it is shown that the proposed method has more preferable to the other methods in the literature. © 2022, The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional. | en_US |
dc.description.sponsorship | The authors are grateful to the Editor-in-Chief and the anonymous referees for their valuable and constructive comments/suggestions to improve the original version. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
dc.relation.ispartof | Computational and Applied Mathematics | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Adaptive method | en_US |
dc.subject | Hyperbolic partial differential equations | en_US |
dc.subject | Mesh-free method | en_US |
dc.subject | Telegraph equation | en_US |
dc.subject | Radial basis function networks | en_US |
dc.subject | Runge Kutta methods | en_US |
dc.subject | Telegraph | en_US |
dc.subject | Time domain analysis | en_US |
dc.subject | Adaptive methods | en_US |
dc.subject | Fifth-order runge-kutta methods | en_US |
dc.subject | Focus points | en_US |
dc.subject | Hyperbolic partial differential equation | en_US |
dc.subject | Meshfree | en_US |
dc.subject | Meshfree methods | en_US |
dc.subject | Multiquadric radial basis function | en_US |
dc.subject | Spatial domains | en_US |
dc.subject | Telegraph equation | en_US |
dc.subject | Time domain | en_US |
dc.subject | Mesh generation | en_US |
dc.title | A reliable and fast mesh-free solver for the telegraph equation | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 41 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.doi | 10.1007/s40314-022-01927-x | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.authorscopusid | 57343067800 | - |
dc.authorscopusid | 57196345699 | - |
dc.authorscopusid | 24080384800 | - |
dc.authorscopusid | 8350347700 | - |
dc.identifier.scopus | 2-s2.0-85133405925 | en_US |
dc.identifier.wos | WOS:000819790300001 | en_US |
dc.identifier.scopusquality | Q2 | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
crisitem.author.dept | 10.02. Civil Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.