Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/47404
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİmamoğlu Karabaş N.-
dc.contributor.authorKorkut S.Ö.-
dc.contributor.authorGurarslan G.-
dc.contributor.authorTanoğlu G.-
dc.date.accessioned2023-01-09T21:24:23Z-
dc.date.available2023-01-09T21:24:23Z-
dc.date.issued2022-
dc.identifier.issn2238-3603-
dc.identifier.urihttps://doi.org/10.1007/s40314-022-01927-x-
dc.identifier.urihttps://hdl.handle.net/11499/47404-
dc.description.abstractIn the presented study, the hyperbolic telegraph equation is taken as the focus point. To solve such an equation, an accurate, reliable, and efficient method has been proposed. The developed method is mainly based on the combination of a kind of mesh-free method and an adaptive method. Multiquadric radial basis function mesh-free method is considered on spatial domain and the adaptive fifth-order Runge–Kutta method is used on time domain. The validity and the performance of the proposed method have been checked on several test problems. The approximate solutions are compared with the exact solution, it is shown that the proposed method has more preferable to the other methods in the literature. © 2022, The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional.en_US
dc.description.sponsorshipThe authors are grateful to the Editor-in-Chief and the anonymous referees for their valuable and constructive comments/suggestions to improve the original version.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofComputational and Applied Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive methoden_US
dc.subjectHyperbolic partial differential equationsen_US
dc.subjectMesh-free methoden_US
dc.subjectTelegraph equationen_US
dc.subjectRadial basis function networksen_US
dc.subjectRunge Kutta methodsen_US
dc.subjectTelegraphen_US
dc.subjectTime domain analysisen_US
dc.subjectAdaptive methodsen_US
dc.subjectFifth-order runge-kutta methodsen_US
dc.subjectFocus pointsen_US
dc.subjectHyperbolic partial differential equationen_US
dc.subjectMeshfreeen_US
dc.subjectMeshfree methodsen_US
dc.subjectMultiquadric radial basis functionen_US
dc.subjectSpatial domainsen_US
dc.subjectTelegraph equationen_US
dc.subjectTime domainen_US
dc.subjectMesh generationen_US
dc.titleA reliable and fast mesh-free solver for the telegraph equationen_US
dc.typeArticleen_US
dc.identifier.volume41en_US
dc.identifier.issue5en_US
dc.identifier.doi10.1007/s40314-022-01927-x-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57343067800-
dc.authorscopusid57196345699-
dc.authorscopusid24080384800-
dc.authorscopusid8350347700-
dc.identifier.scopus2-s2.0-85133405925en_US
dc.identifier.wosWOS:000819790300001en_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

60
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.