Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/47445
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkça, Aykan-
dc.contributor.authorKaraman, Onur-
dc.contributor.authorKarimi-Maleh, Hassan-
dc.contributor.authorKarimi, Fatemeh-
dc.contributor.authorKaraman, Ceren-
dc.contributor.authorAtar, Necip-
dc.contributor.authorYola, Mehmet Lütfi-
dc.contributor.authorErk, Nevin-
dc.date.accessioned2023-01-09T21:24:41Z-
dc.date.available2023-01-09T21:24:41Z-
dc.date.issued2021-
dc.identifier.issn0360-3199-
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2021.09.028-
dc.identifier.urihttps://hdl.handle.net/11499/47445-
dc.description.abstractThe methanol decomposition reaction has gained substantial attention due to the wide range of applications that its intermediates offer. In this work, methanol (CH3OH) decomposition on Copper-embedded graphene (CuG) surface has been investigated via density functional theory with Grimme-D2 dispersion correction. The charge density of the CuG surface has been analyzed and the redistribution of the electron density of the surface has been represented via the electron density difference (EDD) map. Moreover, the decomposition reaction mechanism of CH3OH on the CuG surface through the cleavage of C–H, O–H and C–O bonds has been investigated in detail. In the initial state, the C–O and O–H bonds of CH3OH have similar activation barriers, thereby the adsorption and degradation mechanism of the intermediate states arising through O–H bond cleavage on the CuG surface has been investigated. In addition, the charge density calculations of the transition state geometries have been conducted and examined with EDD maps. The results have revealed that the previously adsorbed oxygen molecule exhibited high catalytic activity towards O–H decomposition compared to the bare surface. The CuG surface has offered higher activity on the C–H bonds compared to the C–O bonds of the intermediate states generated by CH3OH decomposition. The results revealed that the proposed CuG structure can be utilized as an alternative electrode catalyst that can prevent the CO poisoning issue in direct methanol fuel cells. © 2021 Hydrogen Energy Publications LLCen_US
dc.description.sponsorshipThe numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofInternational Journal of Hydrogen Energyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCu-embedded grapheneen_US
dc.subjectDensity functional theoryen_US
dc.subjectMethanol decompositionen_US
dc.subjectReaction mechanismen_US
dc.subjectCarrier concentrationen_US
dc.subjectCatalyst activityen_US
dc.subjectCatalyst poisoningen_US
dc.subjectChemical bondsen_US
dc.subjectDegradationen_US
dc.subjectDirect methanol fuel cells (DMFC)en_US
dc.subjectElectron density measurementen_US
dc.subjectGrapheneen_US
dc.subjectMethanolen_US
dc.subjectMethanol fuelsen_US
dc.subjectReaction intermediatesen_US
dc.subjectCu-embedded grapheneen_US
dc.subjectDecomposition reactionen_US
dc.subjectDensity differenceen_US
dc.subjectDensity-functional-theoryen_US
dc.subjectDFT studyen_US
dc.subjectIntermediate stateen_US
dc.subjectMethanol decompositionen_US
dc.subjectO-H bonden_US
dc.subjectReaction mechanismen_US
dc.subjectVia densityen_US
dc.subjectDensity functional theoryen_US
dc.titleMechanism of methanol decomposition on the Cu-Embedded graphene: A DFT studyen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ijhydene.2021.09.028-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57202773535-
dc.authorscopusid56511598200-
dc.authorscopusid24765141500-
dc.authorscopusid57204542989-
dc.authorscopusid57204127625-
dc.authorscopusid16506395400-
dc.authorscopusid37019046500-
dc.identifier.scopus2-s2.0-85115152788en_US
dc.identifier.scopusqualityQ1-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept10.03. Chemical Engineering-
crisitem.author.dept10.03. Chemical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

15
checked on Nov 16, 2024

Page view(s)

50
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.