Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/47458
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTokat S.-
dc.contributor.authorKaragul K.-
dc.contributor.authorSahin Y.-
dc.contributor.authorAydemir E.-
dc.date.accessioned2023-01-09T21:24:46Z-
dc.date.available2023-01-09T21:24:46Z-
dc.date.issued2022-
dc.identifier.issn1319-1578-
dc.identifier.urihttps://doi.org/10.1016/j.jksuci.2021.08.003-
dc.identifier.urihttps://hdl.handle.net/11499/47458-
dc.description.abstractPerformance measurements are important motivators in evaluating a company's strategy. The performance improvement process starts with the measurement of the current situation. Therefore, companies use various metric quantities for the efficiency and productivity of warehouse management. Recently, many studies have been conducted on key performance indicators. In this study, an artificial intelligence-aided key performance indicator is intended for the loading performance of a warehouse, and the analysis is performed based on various scenarios. In the pre-processing phase, five inputs are taken as the unit price, monthly demand quantities, the number of products loaded from the warehouse, the demand that cannot be loaded on time, and the average delay times of the products that cannot be loaded on time. The outputs of the pre-processing phase are clustered using a fuzzy c-means clustering algorithm. Then a key performance indicator for the warehouse loading operations is proposed using the fuzzy c-means clustering result. Researchers and engineers can easily use the proposed scheme to achieve efficiency in warehouse loading management. © 2021en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 1507 – 7180837en_US
dc.description.sponsorshipThe authors thank to TUBITAK 1507 – 7180837 Research Project for partly supporting of this study.en_US
dc.language.isoenen_US
dc.publisherKing Saud bin Abdulaziz Universityen_US
dc.relation.ispartofJournal of King Saud University - Computer and Information Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectc-meansen_US
dc.subjectFuzzy clusteringen_US
dc.subjectKey performance indicatoren_US
dc.subjectWarehouseen_US
dc.titleFuzzy c-means clustering-based key performance indicator design for warehouse loading operationsen_US
dc.typeArticleen_US
dc.identifier.volume34en_US
dc.identifier.issue8en_US
dc.identifier.startpage6377en_US
dc.identifier.endpage6384en_US
dc.identifier.doi10.1016/j.jksuci.2021.08.003-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57205175652-
dc.authorscopusid56335620600-
dc.authorscopusid57206415790-
dc.authorscopusid36014905300-
dc.identifier.scopus2-s2.0-85113302953en_US
dc.identifier.wosWOS:000862928800014en_US
dc.identifier.scopusqualityQ1-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.dept10.10. Computer Engineering-
crisitem.author.dept32.07. Administration and Organization-
Appears in Collections:Honaz Meslek Yüksekokulu Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S1319157821002044-main.pdf509 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

14
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

10
checked on Nov 21, 2024

Page view(s)

64
checked on Aug 24, 2024

Download(s)

58
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.