Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/47498
Title: A Comparative Study of Co Catalytic Oxidation on the Single Vacancy and Di-Vacancy Graphene Supported Single-Atom Iridium Catalysts: A Dft Analysis
Authors: Akca, Aykan
Karaman, Onur
Karaman, Ceren
Atar, Necip
Yola, Mehmet Lutfi
Keywords: Co Catalytic Oxidation
Single Vacancy (Sv) Graphene
Di-Vacancy (Dv) Graphene
Single Atom Catalysis
Dft
Iridium
Publisher: Elsevier
Abstract: Engineering of high-performance catalysts is of great importance for reducing the greenhouse gas emission by the electrocatalytic oxidation of CO. Single-atom-catalysts (SACs) have gained substantial attention thanks to their superior catalytic activity for CO oxidation, and graphene has been considered as one most promising supporting material owing to its peculiar physicochemical properties. In this work, the mechanism of CO oxidation over iridium (Ir) embedded on both single vacancy graphene (Ir-GN(SV)) and di-vacancy graphene (Ir-GN(DV)) has been investigated with the aid of density functional theory (DFT). The structural properties of Ir-GN(SV) and Ir-GN(DV) were analyzed by Bader charge analysis and electron density difference map. The calculated adsorption energy values of CO and O-2 molecules on both the Ir-GNSV and Ir-GN(DV) have validated that both molecules can be molecularly adsorbed on the surface of each catalyst at room temperature. The results put forth that the reaction mechanism of CO + O-2 -> OOCO -> CO2 + O* prefers to Langmuir Hinshelwood (LH) mechanism. The activation energy for the transition-state for Ir-GNSV has been calculated to be 0.31 eV, whereas the first transition state (TS1) and the second transition state (TS2) of Ir-GN(DV) have been determined as 0.30 eV and 0.26 eV, respectively. Moreover, the results have confirmed that Ir-GN(SV) and Ir-GN(DV) surfaces have high catalytic activity and selectivity towards CO oxidation. On the basis of these findings, the proposed Ir-GN(SV) and Ir-GN(DV) catalysts are considered to be promising SAC for CO oxidation at low-temperature. It can be speculated that this work paves the way for the engineering of boosted-performance Ir-based heterogeneous catalysts by providing deeper mechanistic insights.
Description: Karaman, Ceren/0000-0001-9148-7253; Karaman, Onur/0000-0003-3672-1865
URI: https://doi.org/10.1016/j.surfin.2021.101293
ISSN: 2468-0230
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

60
checked on Mar 22, 2025

WEB OF SCIENCETM
Citations

52
checked on Mar 23, 2025

Page view(s)

114
checked on Mar 4, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.