Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/47505
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJacquet M.-
dc.contributor.authorOsella S.-
dc.contributor.authorHarputlu E.-
dc.contributor.authorPa?ys B.-
dc.contributor.authorKaczmarek M.-
dc.contributor.authorNawrocka E.K.-
dc.contributor.authorRajkiewicz A.A.-
dc.contributor.authorKalek, Marcin-
dc.contributor.authorMichalowski, Pawel P.-
dc.contributor.authorTrzaskowski, Bartosz-
dc.contributor.authorUnlu, C. Gokhan-
dc.contributor.authorLisowski, Wojciech-
dc.contributor.authorPisarek, Marcin-
dc.contributor.authorKazimierczuk, Krzysztof-
dc.contributor.authorOcakoglu, Kasim-
dc.contributor.authorWieckowska, Agnieszka-
dc.contributor.authorKargul, Joanna-
dc.date.accessioned2023-01-09T21:25:07Z-
dc.date.available2023-01-09T21:25:07Z-
dc.date.issued2022-
dc.identifier.issn0897-4756-
dc.identifier.urihttps://doi.org/10.1021/acs.chemmater.2c00088-
dc.identifier.urihttps://hdl.handle.net/11499/47505-
dc.description.abstractDevelopment of robust and cost-effective smart materials requires rational chemical nanoengineering to provide viable technological solutions for a wide range of applications. Recently, a powerful approach based on the electrografting of diazonium salts has attracted a great deal of attention due to its numerous technological advantages. Several studies on graphene-based materials reveal that the covalent attachment of aryl groups via the above approach could lead to additional beneficial properties of this versatile material. Here, we developed the covalently linked metalorganic wires on two transparent, cheap, and conductive materials: fluorine-doped tin oxide (FTO) and FTO/single-layer graphene (FTO/SLG). The wires are terminated with nitrilotriacetic acid metal complexes, which are universal molecular anchors to immobilize His6-tagged proteins, such as biophotocatalysts and other types of redox-active proteins of great interest in biotechnology, optoelectronics, and artificial photosynthesis. We show for the first time that the covalent grafting of a diazonium salt precursor on two different electron-rich surfaces leads to the formation of the molecular wires that promote p-doping of SLG concomitantly with a significantly enhanced unidirectional cathodic photocurrent up to 1 ?A cm-2. Density functional theory modeling reveals that the exceptionally high photocurrent values are due to two distinct mechanisms of electron transfer originating from different orbitals/bands of the diazonium-derived wires depending on the nature of the chelating metal redox center. Importantly, the novel metalorganic interfaces reported here exhibit minimized back electron transfer, which is essential for the maximization of solar conversion efficiency. © 2022 American Chemical Society. All rights reserved.en_US
dc.description.sponsorshipUMO-2017/27/B/ST5/00472, UMO-2018/31/D/ST4/01475en_US
dc.description.sponsorshipM.J. and J.K. acknowledge the financial support from the Polish National Science Centre (OPUS14 grant no. UMO-2017/27/B/ST5/00472 to J.K.). S.O. acknowledges the financial support from the Polish National Science Centre (SONATA14 grant no. UMO-2018/31/D/ST4/01475). Computational resources were provided by the Interdisciplinary Centre for Mathematical and Computational Modeling (ICM, University of Warsaw) under the G83-28 computational grant. We are grateful to Prof. Rafa? Jurczakowski (CNBCh UW & Faculty of Chemistry, University of Warsaw, Poland) for his insightful comments on the article and Mateusz Kasztelan (CNBCh UW and Faculty of Chemistry, University of Warsaw, Poland) for his assistance with the Raman spectroscopy measurements.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofChemistry of Materialsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConductive materialsen_US
dc.subjectCost effectivenessen_US
dc.subjectDensity functional theoryen_US
dc.subjectElectron transitionsen_US
dc.subjectGrafting (chemical)en_US
dc.subjectHeterojunctionsen_US
dc.subjectMetal complexesen_US
dc.subjectMetalsen_US
dc.subjectProteinsen_US
dc.subjectRedox reactionsen_US
dc.subjectTin oxidesen_US
dc.subjectWireen_US
dc.subjectCost effectiveen_US
dc.subjectCovalent attachmenten_US
dc.subjectDiazonium saltsen_US
dc.subjectDoping effectsen_US
dc.subjectElectrograftingen_US
dc.subjectNano-engineeringen_US
dc.subjectP-dopingen_US
dc.subjectPhotocurrent generationsen_US
dc.subjectSingle layeren_US
dc.subjectTechnological solutionen_US
dc.subjectGrapheneen_US
dc.titleDiazonium-Based Covalent Molecular Wiring of Single-Layer Graphene Leads to Enhanced Unidirectional Photocurrent Generation through the p-doping Effecten_US
dc.typeArticleen_US
dc.identifier.volume34en_US
dc.identifier.issue8en_US
dc.identifier.startpage3744en_US
dc.identifier.endpage3758en_US
dc.identifier.doi10.1021/acs.chemmater.2c00088-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57190969741-
dc.authorscopusid57190521694-
dc.authorscopusid55348334900-
dc.authorscopusid6603695887-
dc.authorscopusid57651846300-
dc.authorscopusid57210861643-
dc.authorscopusid57202966627-
dc.identifier.scopus2-s2.0-85129001084en_US
dc.identifier.wosWOS:000795962300015en_US
dc.identifier.scopusqualityQ1-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept20.03. Biomedical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Jun 29, 2024

WEB OF SCIENCETM
Citations

4
checked on Jul 17, 2024

Page view(s)

38
checked on May 27, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.