Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/47574
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShehu, Harisu Abdullahi-
dc.contributor.authorSharif, Md. Haidar-
dc.contributor.authorSharif, Md. Haris Uddin-
dc.contributor.authorDatta, Ripon-
dc.contributor.authorTokat, Sezai-
dc.contributor.authorUyaver, Şahin-
dc.contributor.authorKusetoğulları, Hüseyin-
dc.contributor.authorRamadan, Rabie A.-
dc.date.accessioned2023-01-09T21:29:17Z-
dc.date.available2023-01-09T21:29:17Z-
dc.date.issued2021-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2021.3071393-
dc.identifier.urihttps://hdl.handle.net/11499/47574-
dc.description.abstractSentiment analysis using stemmed Twitter data from various languages is an emerging research topic. In this paper, we address three data augmentation techniques namely Shift, Shuffle, and Hybrid to increase the size of the training data; and then we use three key types of deep learning (DL) models namely recurrent neural network (RNN), convolution neural network (CNN), and hierarchical attention network (HAN) to classify the stemmed Turkish Twitter data for sentiment analysis. The performance of these DL models has been compared with the existing traditional machine learning (TML) models. The performance of TML models has been affected negatively by the stemmed data, but the performance of DL models has been improved greatly with the utilization of the augmentation techniques. Based on the simulation, experimental, and statistical results analysis deeming identical datasets, it has been concluded that the TML models outperform the DL models with respect to both training-time (TTM) and runtime (RTM) complexities of the algorithms; but the DL models outperform the TML models with respect to the most important performance factors as well as the average performance rankings. © 2013 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Accessen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectData augmentationen_US
dc.subjectdeep learningen_US
dc.subjectmachine learningen_US
dc.subjectneural networksen_US
dc.subjectsentiment analysisen_US
dc.subjectTurkishen_US
dc.subjectTwitteren_US
dc.subjectClassification (of information)en_US
dc.subjectLearning systemsen_US
dc.subjectSentiment analysisen_US
dc.subjectSocial networking (online)en_US
dc.subjectAugmentation techniquesen_US
dc.subjectConvolution neural networken_US
dc.subjectData augmentationen_US
dc.subjectPerformance factorsen_US
dc.subjectPerformance rankingsen_US
dc.subjectRecurrent neural network (RNN)en_US
dc.subjectResearch topicsen_US
dc.subjectTraining timeen_US
dc.subjectRecurrent neural networksen_US
dc.titleDeep Sentiment Analysis: A Case Study on Stemmed Turkish Twitter Dataen_US
dc.typeArticleen_US
dc.identifier.volume9en_US
dc.identifier.startpage56836en_US
dc.identifier.endpage56854en_US
dc.identifier.doi10.1109/ACCESS.2021.3071393-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57212461144-
dc.authorscopusid26649144300-
dc.authorscopusid55421211700-
dc.authorscopusid57222735795-
dc.authorscopusid57205175652-
dc.authorscopusid6507968191-
dc.authorscopusid22941197000-
dc.identifier.scopus2-s2.0-85103885312en_US
dc.identifier.scopusqualityQ1-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
09395633.pdf2.82 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

22
checked on Nov 16, 2024

Page view(s)

38
checked on Aug 24, 2024

Download(s)

56
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.