Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/47574
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shehu, Harisu Abdullahi | - |
dc.contributor.author | Sharif, Md. Haidar | - |
dc.contributor.author | Sharif, Md. Haris Uddin | - |
dc.contributor.author | Datta, Ripon | - |
dc.contributor.author | Tokat, Sezai | - |
dc.contributor.author | Uyaver, Sahin | - |
dc.contributor.author | Ramadan, Rabie A. | - |
dc.date.accessioned | 2023-01-09T21:29:17Z | - |
dc.date.available | 2023-01-09T21:29:17Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 2169-3536 | - |
dc.identifier.uri | https://doi.org/10.1109/ACCESS.2021.3071393 | - |
dc.description | Shehu, Harisu Abdullahi/0000-0002-9689-3290; Kusetogullari, Huseyin/0000-0001-5762-6678; Tokat, Sezai/0000-0003-0193-8220; Sharif, Md Haris Uddin/0000-0002-1169-8438; Uyaver, Sahin/0000-0001-8776-3032; Sharif, Md. Haidar/0000-0001-7235-6004; Ramadan, Rabie/0000-0002-0281-9381; Datta, Ripon/0000-0003-4738-2918 | en_US |
dc.description.abstract | Sentiment analysis using stemmed Twitter data from various languages is an emerging research topic. In this paper, we address three data augmentation techniques namely Shift, Shuffle, and Hybrid to increase the size of the training data; and then we use three key types of deep learning (DL) models namely recurrent neural network (RNN), convolution neural network (CNN), and hierarchical attention network (HAN) to classify the stemmed Turkish Twitter data for sentiment analysis. The performance of these DL models has been compared with the existing traditional machine learning (TML) models. The performance of TML models has been affected negatively by the stemmed data, but the performance of DL models has been improved greatly with the utilization of the augmentation techniques. Based on the simulation, experimental, and statistical results analysis deeming identical datasets, it has been concluded that the TML models outperform the DL models with respect to both training-time (TTM) and runtime (RTM) complexities of the algorithms; but the DL models outperform the TML models with respect to the most important performance factors as well as the average performance rankings. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ieee-inst Electrical Electronics Engineers inc | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Social Networking (Online) | en_US |
dc.subject | Blogs | en_US |
dc.subject | Sentiment Analysis | en_US |
dc.subject | Analytical Models | en_US |
dc.subject | Recurrent Neural Networks | en_US |
dc.subject | Sociology | en_US |
dc.subject | Machine Learning Algorithms | en_US |
dc.subject | Data Augmentation | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Neural Networks | en_US |
dc.subject | Sentiment Analysis | en_US |
dc.subject | Turkish | en_US |
dc.subject | en_US | |
dc.title | Deep Sentiment Analysis: a Case Study on Stemmed Turkish Twitter Data | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 9 | en_US |
dc.identifier.startpage | 56836 | en_US |
dc.identifier.endpage | 56854 | en_US |
dc.department | Pamukkale University | en_US |
dc.authorid | Shehu, Harisu Abdullahi/0000-0002-9689-3290 | - |
dc.authorid | Kusetogullari, Huseyin/0000-0001-5762-6678 | - |
dc.authorid | Tokat, Sezai/0000-0003-0193-8220 | - |
dc.authorid | Sharif, Md Haris Uddin/0000-0002-1169-8438 | - |
dc.authorid | Uyaver, Sahin/0000-0001-8776-3032 | - |
dc.authorid | Sharif, Md. Haidar/0000-0001-7235-6004 | - |
dc.authorid | Datta, Ripon/0000-0003-4738-2918 | - |
dc.identifier.doi | 10.1109/ACCESS.2021.3071393 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.authorwosid | Uyaver, Sahin/Hsa-7505-2023 | - |
dc.authorwosid | Tokat, Sezai/Hji-5975-2023 | - |
dc.authorwosid | Shehu, Harisu/Aam-7425-2020 | - |
dc.authorwosid | Sharif, Haidar/Aar-6783-2021 | - |
dc.authorwosid | Kusetogullari, Huseyin/Iaq-0788-2023 | - |
dc.authorwosid | Sharif, Md. Haidar/F-6480-2015 | - |
dc.authorwosid | Ramadan, Rabie/H-9543-2016 | - |
dc.identifier.scopus | 2-s2.0-85103885312 | en_US |
dc.identifier.scopus | 2-s2.0-85103885312 | - |
dc.identifier.wos | WOS:000641943600001 | - |
dc.identifier.scopusquality | Q1 | - |
dc.description.woscitationindex | Science Citation Index Expanded - Social Science Citation Index | - |
dc.identifier.wosquality | Q2 | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 10.10. Computer Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
09395633.pdf | 2.82 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
23
checked on Mar 29, 2025
WEB OF SCIENCETM
Citations
17
checked on Apr 3, 2025
Page view(s)
58
checked on Feb 8, 2025
Download(s)
76
checked on Feb 8, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.