Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/47587
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuzel M.-
dc.contributor.authorOkay F.Y.-
dc.contributor.authorKok I.-
dc.contributor.authorOzdemir S.-
dc.date.accessioned2023-01-09T21:29:18Z-
dc.date.available2023-01-09T21:29:18Z-
dc.date.issued2022-
dc.identifier.isbn9781665485449-
dc.identifier.urihttps://doi.org/10.1109/ISNCC55209.2022.9851805-
dc.identifier.urihttps://hdl.handle.net/11499/47587-
dc.description2022 International Symposium on Networks, Computers and Communications, ISNCC 2022 -- 19 July 2022 through 21 July 2022 -- 182021en_US
dc.description.abstractThis paper proposes a novel quantum computing-inspired approach to multi-objective optimization, called Quantum Computing Inspired Non-dominated Sorting Genetic Algorithm II (QNSGA-II). Although Non-dominated Sorting Genetic Algorithm II (NSGA-II) has been effectively used in the literature to solve a variety of optimization issues, it may encounter some difficulties especially in handling heavily constrained problems due to its premature convergence. The proposed approach mitigates this difficulty by combining conventional NSGA-II with the concept and principles of quantum computing. QNSGA-II exploits quantum bits and superposition of states to reduce the convergence time and improve search space capability by evolving the probabilistic model. This paper aims to provide more detailed information about our proposed algorithm and its advantages. © 2022 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2022 International Symposium on Networks, Computers and Communications, ISNCC 2022en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmulti-objective evolutionary algorithmen_US
dc.subjectNSGA-IIen_US
dc.subjectQNSGA-IIen_US
dc.subjectquantum computingen_US
dc.subjectConstrained optimizationen_US
dc.subjectGenetic algorithmsen_US
dc.subjectQuantum computersen_US
dc.subjectQuantum theoryen_US
dc.subjectConstrained problemen_US
dc.subjectMulti-Objective Evolutionary Algorithmen_US
dc.subjectMulti-objectives optimizationen_US
dc.subjectNon dominated sorting genetic algorithm ii (NSGA II)en_US
dc.subjectOptimisationsen_US
dc.subjectPremature convergenceen_US
dc.subjectQuantum Computingen_US
dc.subjectQuantum computing inspired non-dominated sorting genetic algorithm IIen_US
dc.subjectMultiobjective optimizationen_US
dc.titleQNSGA-II: A Quantum Computing-Inspired Approach to Multi-Objective Optimizationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ISNCC55209.2022.9851805-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.authorscopusid57188853013-
dc.authorscopusid55568614900-
dc.authorscopusid57200283688-
dc.authorscopusid23467461900-
dc.identifier.scopus2-s2.0-85137151574en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept02.02. Horticultural Crops-
crisitem.author.dept10.10. Computer Engineering-
crisitem.author.dept20.04. Mechatronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

46
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.