Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/47727
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKahraman F.-
dc.contributor.authorKaradeniz S.-
dc.contributor.authorDurmuş H.-
dc.date.accessioned2023-01-09T21:29:47Z-
dc.date.available2023-01-09T21:29:47Z-
dc.date.issued2012-
dc.identifier.issn0025-5300-
dc.identifier.urihttps://doi.org/10.3139/120.110289-
dc.identifier.urihttps://hdl.handle.net/11499/47727-
dc.description.abstractSurface modification of a Ti6A14V titanium alloy was made by the plasma nitriding process. Plasma nitriding was performed in a constant gas mixture of 20% H2-80% N2 at temperatures between 700 and 1000° C and process times between 2 and 15 h. Samples nitrided at different treatment times and temperatures were subjected to the dry sliding wear test using the pin-on-disc set up under 80N normal load with rotational speed of counter face disc of 0.8 m/s at room conditions. An artificial neural network (ANN) model of was developed for prediction of wear performance of the plasma nitrided Ti6A14V alloy. The inputs of the ANN model were processing times and temperatures, diffusion layer thickness, Ti2N thickness, TiN thickness and hardness. The output of the ANN model was wear loss. The model is based on the multilayer backpropagation neural technique. The ANN was trained with a comprehensive dataset collected from experimental conditions and results of authors. The model can be used for the prediction of wear properties of Ti6A14V alloys nitrided at different parameters. The ANN model demonstrated the best statistical performance with the experimental results. © Carl Hanser Verlag, München.en_US
dc.language.isoenen_US
dc.publisherCarl Hanser Verlagen_US
dc.relation.ispartofMaterialpruefung/Materials Testingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecastingen_US
dc.subjectNeural networksen_US
dc.subjectNitridingen_US
dc.subjectNitrogen plasmaen_US
dc.subjectPlasma applicationsen_US
dc.subjectSurface treatmenten_US
dc.subjectTitanium alloysen_US
dc.subjectArtificial neural network modelsen_US
dc.subjectDifferent treatmentsen_US
dc.subjectDiffusion layer thicknessen_US
dc.subjectDry sliding wear testen_US
dc.subjectExperimental conditionsen_US
dc.subjectNeural techniquesen_US
dc.subjectStatistical performanceen_US
dc.subjectThickness and hardnessen_US
dc.subjectDeep neural networksen_US
dc.titleANN-Based wear performance prediction for plasma nitrided Ti6AI4V Alloyen_US
dc.typeArticleen_US
dc.identifier.volume54en_US
dc.identifier.issue1en_US
dc.identifier.startpage30en_US
dc.identifier.endpage35en_US
dc.identifier.doi10.3139/120.110289-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57211031634-
dc.authorscopusid23989325200-
dc.authorscopusid55970321700-
dc.identifier.scopus2-s2.0-84855901596en_US
dc.identifier.scopusqualityQ3-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 23, 2024

Page view(s)

22
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.