Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/47894
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCanyurt O.-
dc.contributor.authorHajela P.-
dc.date.accessioned2023-01-09T21:30:39Z-
dc.date.available2023-01-09T21:30:39Z-
dc.date.issued2004-
dc.identifier.issn0273-4508-
dc.identifier.urihttps://hdl.handle.net/11499/47894-
dc.descriptionCollect. of Pap. - 45th AIAA/ASME/ASCE/AHS/ASC Struct., Struct. Dyn. and Mater. Conf.; 12th AIAA/ASME/AHS Adapt. Struct. Conf.; 6th AIAA Non-Deterministic Approaches Forum; 5th AIAA Gossamer Spacecraft Forum -- 19 April 2004 through 22 April 2004 -- Palm Springs, CA -- 64536en_US
dc.description.abstractGenetic algorithms have received considerable recent attention in problems of design optimization. The mechanics of population-based search in GA's is highly amenable to implementation on parallel computers. The present paper describes a fine-grained model of parallel GA implementation that derives from a cellular-automata-like computation. The central idea behind the cellular genetic algorithm (CGA) approach is to treat the GA population as being distributed over a 2-D grid of cells, with each member of the population occupying a particular cell and defining the state of that cell. Evolution of the cell state is tantamount to updating the design information contained in a cell site, and as in cellular automata computations, takes place on the basis of local interaction with neighboring cells. A special focus of the paper is in the use of cellular automata (CA) based models for structural analysis in conjunction with the CGA approach to optimization. In such an approach, the analysis and optimization are evolved simultaneously in a unified cellular computational framework. The paper describes the implementation of this approach and examines its efficiency in the context of representative structural optimization problems. Copyright © 2004 by Prabhat Hajela.en_US
dc.language.isoenen_US
dc.relation.ispartofCollection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCellular computation modelsen_US
dc.subjectCellular genetic algorithms (CGA)en_US
dc.subjectNonlinear stiffnessen_US
dc.subjectTurning machinesen_US
dc.subjectAutomata theoryen_US
dc.subjectComputer simulationen_US
dc.subjectMathematical modelsen_US
dc.subjectParallel processing systemsen_US
dc.subjectProblem solvingen_US
dc.subjectStrainen_US
dc.subjectStructural optimizationen_US
dc.subjectVectorsen_US
dc.subjectGenetic algorithmsen_US
dc.titleA SAND approach based on cellular computation models for analysis and optimization [Conference Paper]en_US
dc.typeConference Objecten_US
dc.identifier.volume6en_US
dc.identifier.startpage4228en_US
dc.identifier.endpage4241en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.authorscopusid6506844536-
dc.authorscopusid7004905736-
dc.identifier.scopus2-s2.0-16244371304en_US
dc.identifier.scopusquality--
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Jan 4, 2025

Page view(s)

76
checked on Feb 8, 2025

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.