Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4824
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞekercioğlu, Tezcan-
dc.date.accessioned2019-08-16T11:37:41Z
dc.date.available2019-08-16T11:37:41Z
dc.date.issued2005-
dc.identifier.issn0143-7496-
dc.identifier.urihttps://hdl.handle.net/11499/4824-
dc.identifier.urihttps://doi.org/10.1016/j.ijadhadh.2004.11.002-
dc.description.abstractThe bonding strength of adhesives is influenced by the interference fit, bonding clearances, surface roughness, adherent and temperature. Since all these factors affect the strength of the adhesively joined parts, the effect of these parameters was investigated experimentally by the researchers. The present paper describes the use of stochastic search process that is the basis of the genetic algorithm (GA), in developing shear strength estimation of adhesively bonded cylindrical components. Non-linear estimation models are developed using GA. Developed models are validated with experimental data. Genetic algorithm shear strength estimation model (GASSEM) is used to estimate the shear strength of the adhesively bonded tubular joint for the surface roughness, bonding clearance, interference fit, temperature and adherent, such as steel, bronze and aluminum material. © 2005 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Adhesion and Adhesivesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnaerobicen_US
dc.subjectGenetic algorithmen_US
dc.subjectJoint designen_US
dc.subjectMechanical properties of adhesivesen_US
dc.subjectAdhesive jointsen_US
dc.subjectAluminumen_US
dc.subjectBond strength (materials)en_US
dc.subjectBronzeen_US
dc.subjectGenetic algorithmsen_US
dc.subjectLoadingen_US
dc.subjectMathematical modelsen_US
dc.subjectShear strengthen_US
dc.subjectSteelen_US
dc.subjectStochastic programmingen_US
dc.subjectStressesen_US
dc.subjectSurface roughnessen_US
dc.subjectSurface structureen_US
dc.subjectGenetic algorithm shear strength estimation model (GASSEM)en_US
dc.subjectAdhesivesen_US
dc.titleShear strength estimation of adhesively bonded cylindrical components under static loading using the genetic algorithm approachen_US
dc.typeArticleen_US
dc.identifier.volume25en_US
dc.identifier.issue4en_US
dc.identifier.startpage352
dc.identifier.startpage352en_US
dc.identifier.endpage357en_US
dc.authorid0000-0002-9359-8843-
dc.identifier.doi10.1016/j.ijadhadh.2004.11.002-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-13844257669en_US
dc.identifier.wosWOS:000227604600010en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

25
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

19
checked on Nov 21, 2024

Page view(s)

44
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.