Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4831
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarabulut, H.-
dc.contributor.authorKalay, Mestan-
dc.date.accessioned2019-08-16T11:37:45Z
dc.date.available2019-08-16T11:37:45Z
dc.date.issued2005-
dc.identifier.issn0020-7608-
dc.identifier.urihttps://hdl.handle.net/11499/4831-
dc.identifier.urihttps://doi.org/10.1002/qua.20576-
dc.description.abstractA discrete variable representation (DVR) made from distributed Gaussians gn(x) = e-c2(x/d-n)2, (n = - ?,..., ?) and its infinite grid limit is described. The infinite grid limit of the distributed Gaussian DVR (DGDVR) reduces to the sine function DVR of Colbert and Miller in the limit c › 0. The numerical performance of both finite and infinite grid DGDVRs and the sine function DVR is compared. If a small number of quadrature points are taken, the finite grid DGDVR performs much better than both infinite grid DGDVR and sine function DVR. The infinite grid DVRs lose accuracy due to the truncation error. In contrast, the sine function DVR is found to be superior to both finite and infinite grid DGDVRs if enough grid points are taken to eliminate the truncation error. In particular, the accuracy of DGDVRs does not get better than some limit when the distance between Gaussians d goes to zero with fixed c, whereas the accuracy of the sine function DVR improves very quickly as d becomes smaller, and the results are exact in the limit d › 0. An analysis of the performance of distributed basis functions to represent a given function is presented in a recent publication. With this analysis, we explain why the sine function DVR performs better than the infinite grid DGDVR. The analysis also traces the inability of Gaussians to yield exact results in the limit d › 0 to the incompleteness of this basis in this limit. © 2005 Wilev Periodicals. Inc.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Inc.en_US
dc.relation.ispartofInternational Journal of Quantum Chemistryen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDiscrete variable representationsen_US
dc.subjectDistributed Gaussiansen_US
dc.subjectGaussian quadraturesen_US
dc.subjectSinc functionen_US
dc.subjectFunctionsen_US
dc.subjectKinetic energyen_US
dc.subjectLagrange multipliersen_US
dc.subjectMatrix algebraen_US
dc.subjectMolecular vibrationsen_US
dc.subjectMolecular weighten_US
dc.subjectPolynomialsen_US
dc.subjectPhysical chemistryen_US
dc.titleDistributed Gaussian discrete variable representationen_US
dc.typeArticleen_US
dc.identifier.volume104en_US
dc.identifier.issue1en_US
dc.identifier.startpage16
dc.identifier.startpage16en_US
dc.identifier.endpage28en_US
dc.identifier.doi10.1002/qua.20576-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-22544437214en_US
dc.identifier.wosWOS:000229895500002en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale_University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept17.03. Physics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 21, 2024

Page view(s)

32
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.