Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/48490
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBozuyla, Mehmet-
dc.date.accessioned2023-01-09T21:37:59Z-
dc.date.available2023-01-09T21:37:59Z-
dc.date.issued2022-
dc.identifier.issn2667-8055-
dc.identifier.urihttps://doi.org/10.36306/konjes.995060-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1121074-
dc.identifier.urihttps://hdl.handle.net/11499/48490-
dc.description.abstractThe increasing usage of social media and internet generates a significant amount of information to be analyzed from various perspectives. In particular, fake news is defined as the false news that is presented as factual news. Fake news are in general fabricated toward a manipulation aim. Fake news identification is in general a natural language analysis problem and machine learning algorithms are emerged as automated predictors. Well-known machine learning algorithms such as Naïve Bayes (NB) and Random Forest (RF) are successfully used for fake-news identification problem. Turkish is a morphologically rich language and it has agglutinative complexity that requires dense language pre-processing steps and feature selection. Recent neural language models such as Bidirectional Encoder Representations from Transformers (BERT) proposes an opportunity for Turkish-like morphologically rich languages a relatively straightforward pipeline in the solution of natural language problems. In this work, we compared NB, RF, Support Vector Machine (SVM), Naïve Bayes Multinomial (NBM) and Logistics Regression (LR) on top of correlation based feature selection and newly proposed Turkish-BERT (BERTurk) to identify Turkish fake news. And we obtained 99.90 % accuracy in fake news identification which is a highly efficient model without substantial language pre-processing tasks.en_US
dc.language.isoenen_US
dc.relation.ispartofKonya mühendislik bilimleri dergisi (Online)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMachine learningen_US
dc.subjectText miningen_US
dc.subjectBidirectional Encoder Representations from Transformers (BERT)en_US
dc.subjectFake newsen_US
dc.subjectBERTurken_US
dc.titleAdvanced turkish fake news prediction with bidirectional encoder representations from transformersen_US
dc.typeArticleen_US
dc.identifier.volume10en_US
dc.identifier.issue3en_US
dc.identifier.startpage750en_US
dc.identifier.endpage761en_US
dc.departmentPAUen_US
dc.identifier.doi10.36306/konjes.995060-
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid1121074en_US
dc.identifier.wosWOS:001313258400017-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextopen-
item.cerifentitytypePublications-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
Files in This Item:
File SizeFormat 
document (10).pdf985.7 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

46
checked on Aug 24, 2024

Download(s)

4
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.