Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4879
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCeylan, H.-
dc.contributor.authorOzturk, H.K.-
dc.contributor.authorHepbasli, A.-
dc.contributor.authorUtlu, Z.-
dc.date.accessioned2019-08-16T11:38:21Z-
dc.date.available2019-08-16T11:38:21Z-
dc.date.issued2005-
dc.identifier.issn0090-8312-
dc.identifier.urihttps://hdl.handle.net/11499/4879-
dc.identifier.urihttps://doi.org/10.1080/00908310490448631-
dc.description.abstractThe main objective of the present study is to investigate the application of the genetic algorithm (GA) method with various scenarios for the future estimation of the energy and exergy production and consumption values. The methodology developed and presented in detail in Part 1 of this study was applied to Turkey's energy and exergy utilization values. Good correlations were obtained in all cases, indicating the validity of the models proposed that can be used to estimate total energy and exergy production and consumption of Turkey for the period of 2000-2020. It may be concluded that the models reported here will provide the investigators with knowledge about how a country can model its natural resources in terms of energy and exergy utilizations. Copyright © Taylor & Francis Inc.en_US
dc.language.isoenen_US
dc.relation.ispartofEnergy Sourcesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnergyen_US
dc.subjectEnergy demanden_US
dc.subjectEnergy modelingen_US
dc.subjectEnergy planningen_US
dc.subjectExergyen_US
dc.subjectExergy modelingen_US
dc.subjectFuture projectionsen_US
dc.subjectGAen_US
dc.subjectGenetic algorithmen_US
dc.subjectTurkeyen_US
dc.subjectCorrelation methodsen_US
dc.subjectEconomic and social effectsen_US
dc.subjectGenetic algorithmsen_US
dc.subjectMathematical modelsen_US
dc.subjectNatural resourcesen_US
dc.subjectPlanningen_US
dc.subjectEnergy utilizationen_US
dc.titleEstimating energy and exergy production and consumption values using three different genetic algorithm approaches. Part 2: Application and scenariosen_US
dc.typeArticleen_US
dc.identifier.volume27en_US
dc.identifier.issue7en_US
dc.identifier.startpage629
dc.identifier.startpage629en_US
dc.identifier.endpage639en_US
dc.identifier.doi10.1080/00908310490448631-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-18444388620en_US
dc.identifier.wosWOS:000228667400006en_US
local.message.claim2023-07-12T19:54:09.286+0300|||rp00390|||submit_approve|||dc_contributor_author|||None*
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

26
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

29
checked on Nov 15, 2024

Page view(s)

80
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.