Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4880
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCeylan, H.-
dc.contributor.authorOzturk, H.K.-
dc.contributor.authorHepbasli, A.-
dc.contributor.authorUtlu, Z.-
dc.date.accessioned2019-08-16T11:38:22Z-
dc.date.available2019-08-16T11:38:22Z-
dc.date.issued2005-
dc.identifier.issn0090-8312-
dc.identifier.urihttps://hdl.handle.net/11499/4880-
dc.identifier.urihttps://doi.org/10.1080/00908310490448604-
dc.description.abstractThe present study, consisting of two parts, proposes new models for estimating energy and exergy production and consumption values using the genetic algorithm approach. Part 1 of this study deals with the model development, while the application and testing with various scenarios will be treated in Part 2. In this regard, the genetic algorithm energy (GAEN) and genetic algorithm exergy (GAEX) estimating models have been proposed. During the energy and exergy estimation, independent variables are the GDP, population, and the ratio of export to import. The three forms of the GAEN and GAEX are developed, of which one is linear, second is exponential and the third is a mix of the exponential and linear form of the equations. Among them, the best fit models in terms of average relative errors and for the testing period are selected for future estimation and proposed both for GAEN and GAEX. It may be concluded that the models proposed here can be used as an alternative solution and estimation techniques to available estimation techniques. Copyright © Taylor & Francis inc.en_US
dc.language.isoenen_US
dc.relation.ispartofEnergy Sourcesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnergyen_US
dc.subjectEnergy demanden_US
dc.subjectEnergy modelingen_US
dc.subjectEnergy planningen_US
dc.subjectExergyen_US
dc.subjectExergy modelingen_US
dc.subjectFuture projectionsen_US
dc.subjectGAen_US
dc.subjectGenetic algorithmen_US
dc.subjectEconomic and social effectsen_US
dc.subjectEnergy utilizationen_US
dc.subjectError analysisen_US
dc.subjectFossil fuelsen_US
dc.subjectMathematical modelsen_US
dc.subjectPlanningen_US
dc.subjectExergy exergy modelingen_US
dc.subjectGenetic algorithmsen_US
dc.titleEstimating energy and exergy production and consumption values using three different genetic algorithm approaches. Part 1: Model developmenten_US
dc.typeArticleen_US
dc.identifier.volume27en_US
dc.identifier.issue7en_US
dc.identifier.startpage621
dc.identifier.startpage621en_US
dc.identifier.endpage627en_US
dc.identifier.doi10.1080/00908310490448604-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-18444368179en_US
dc.identifier.wosWOS:000228667400005en_US
local.message.claim2023-07-12T19:54:27.201+0300|||rp00390|||submit_approve|||dc_contributor_author|||None*
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on May 27, 2024

WEB OF SCIENCETM
Citations

9
checked on Aug 9, 2024

Page view(s)

40
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.