Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4941
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHaldenbilen, Soner-
dc.contributor.authorCeylan, Halim-
dc.date.accessioned2019-08-16T11:39:10Z
dc.date.available2019-08-16T11:39:10Z
dc.date.issued2005-
dc.identifier.issn0301-4215-
dc.identifier.urihttps://hdl.handle.net/11499/4941-
dc.identifier.urihttps://doi.org/10.1016/S0301-4215(03)00202-7-
dc.description.abstractTransport energy modeling is a subject of current interest among transport engineers and scientists concerned with problems of sustainable transport. Transport energy planning is not possible without a reasonable knowledge of past and present energy consumption and likely future demands. In this study, three forms of the energy demand equations are developed in order to improve transport energy demand estimation efficiency for future projections based on genetic algorithm (GA) notion. The Genetic Algorithm Transport Energy Demand Estimation (GATEDE) model is developed using population, gross domestic product and vehicle-km. All equations proposed here are linear and non-linear, of which one is linear, second is exponential and third is quadratic. The quadratic form of the GATEDE model provided better-fit solution to the observed data and can be used with a high correlation coefficient for Turkey's future transport energy projections. It is expected that this study will be helpful in developing highly applicable and productive planning for transport energy policies. The GATEDE gives transport energy demand in comparison with the other transport energy demand projections. The GATEDE model plans the sectoral energy demand of Turkey until 2020. © 2003 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofEnergy Policyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnergy demanden_US
dc.subjectGenetic algorithmen_US
dc.subjectSocio-economic indicatorsen_US
dc.subjectTransporten_US
dc.subjectEnergy conservationen_US
dc.subjectGenetic algorithmsen_US
dc.subjectMathematical modelsen_US
dc.subjectPlanningen_US
dc.subjectSustainable developmenten_US
dc.subjectTransportationen_US
dc.subjectEnergy planningen_US
dc.subjectTransport energyen_US
dc.subjectEnergy policyen_US
dc.subjectenergy planningen_US
dc.subjectenergy useen_US
dc.subjectgenetic algorithmen_US
dc.subjecttransportation planningen_US
dc.subjectEurasiaen_US
dc.subjectTurkeyen_US
dc.subjectAvesen_US
dc.subjectMeleagris gallopavoen_US
dc.titleGenetic algorithm approach to estimate transport energy demand in Turkeyen_US
dc.typeArticleen_US
dc.identifier.volume33en_US
dc.identifier.issue1en_US
dc.identifier.startpage89
dc.identifier.startpage89en_US
dc.identifier.endpage98en_US
dc.identifier.doi10.1016/S0301-4215(03)00202-7-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-3543079934en_US
dc.identifier.wosWOS:000223936000009en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

118
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

57
checked on Nov 21, 2024

Page view(s)

66
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.