Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4987
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGölcü, Mustafa-
dc.contributor.authorSekmen, Y.-
dc.contributor.authorErduranli, P.-
dc.contributor.authorSalman, M.S.-
dc.date.accessioned2019-08-16T11:39:41Z
dc.date.available2019-08-16T11:39:41Z
dc.date.issued2005-
dc.identifier.issn0306-2619-
dc.identifier.urihttps://hdl.handle.net/11499/4987-
dc.identifier.urihttps://doi.org/10.1016/j.apenergy.2004.07.008-
dc.description.abstractVariable valve-timing and lift are significant operating and design parameters affecting the performance and emissions in spark-ignition (SI) engines. Previous investigations have demonstrated that improvements in engine performance can be accomplished if the valve timing is variable. Traditionally, valve timing has been designed to optimize operation at high engine-speed and wide-open throttle conditions. Controlling valve timing can improve the torque and power curve of a given engine. Variable valve-timing can be used to reduce fuel consumption and increase engine performance. Intake valve-opening timing was changed from 10° crankshaft angle (CA) to 30° CA for both advance and retard with 10° CA intervals to the original opening timing. In this study, artificial neural-networks (ANNs) are used to determine the effects of intake valve timing on the engine performance and fuel economy. Experimental studies were completed to obtain training and test data. Intake valve-timing and engine speed have been used as the input layer; engine torque and fuel consumption have been used as the output layer. For the torque testing data, root mean squared-error (RMSE), fraction of variance (R2) and mean absolute percentage error (MAPE) were found to be 0.9017%, 0.9920% and 7.2613%, respectively. Similarly, for the fuel consumption, RMSE, R2 and MAPE were 0.2860%, 0.9299% and 7.5448%, respectively. With these results, we believe that the ANN can be used for the prediction of engine performance as an appropriate method for spark-ignition (SI) engines. © 2004 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.relation.ispartofApplied Energyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural-networken_US
dc.subjectEngine performanceen_US
dc.subjectSpark-ignition engineen_US
dc.subjectVariable valve-timingen_US
dc.subjectData acquisitionen_US
dc.subjectFuel consumptionen_US
dc.subjectFuel economyen_US
dc.subjectNeural networksen_US
dc.subjectTorqueen_US
dc.subjectArtificial neural-network based modelingen_US
dc.subjectMean absolute percentage error (MAPE)en_US
dc.subjectRoot mean squared-error (RMSE)en_US
dc.subjectSpark-ignition (SI) enginesen_US
dc.subjectInternal combustion enginesen_US
dc.subjectengineen_US
dc.subjectIgnitionen_US
dc.subjectmodelingen_US
dc.subjectneural networken_US
dc.titleArtificial neural-network based modeling of variable valve-timing in a spark-ignition engineen_US
dc.typeArticleen_US
dc.identifier.volume81en_US
dc.identifier.issue2en_US
dc.identifier.startpage187
dc.identifier.startpage187en_US
dc.identifier.endpage197en_US
dc.identifier.doi10.1016/j.apenergy.2004.07.008-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-13944257687en_US
dc.identifier.wosWOS:000228757300005en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept20.01. Automotive Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknik Eğitim Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

118
checked on Dec 14, 2024

WEB OF SCIENCETM
Citations

93
checked on Dec 19, 2024

Page view(s)

38
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.