Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/5009
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCanyurt, Olcay Ersel.-
dc.contributor.authorCeylan, Halim.-
dc.contributor.authorÖzturk, Harun Kemal.-
dc.contributor.authorHepbasli, A.-
dc.date.accessioned2019-08-16T11:39:59Z
dc.date.available2019-08-16T11:39:59Z
dc.date.issued2004-
dc.identifier.issn0090-8312-
dc.identifier.urihttps://hdl.handle.net/11499/5009-
dc.identifier.urihttps://doi.org/10.1080/00908310490441610-
dc.description.abstractEnergy modeling is a subject of widespread current interest among engineers and scientists concerned with problems of energy production and consumption. Energy planning is not possible without a reasonable knowledge of past and present energy consumption and likely future demands. In this study, two forms of the energy demand equations are developed in order to improve energy demand estimation efficiency for future projections based on the genetic algorithm (GA) notion. The genetic algorithm energy demand (GAEDM) model is used to estimate Turkey's future energy demand based on gross domestic product, population, import, and export figures. Both equations proposed here are non-linear, of which one is exponential and the other is quadratic. The quadratic form of the GAEDM model provided a slightly better fit solution to the observed data and can be used with a high correlation coefficient for Turkey's future energy projections. It is expected that this study will be helpful in developing highly applicable and productive planning for energy policies.en_US
dc.language.isoenen_US
dc.relation.ispartofEnergy Sourcesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnergyen_US
dc.subjectEnergy demanden_US
dc.subjectEnergy modelingen_US
dc.subjectEnergy planningen_US
dc.subjectFuture projectionsen_US
dc.subjectGenetic algorithmen_US
dc.subjectTurkeyen_US
dc.subjectData acquisitionen_US
dc.subjectEnergy utilizationen_US
dc.subjectForecastingen_US
dc.subjectGenetic algorithmsen_US
dc.subjectGeographical regionsen_US
dc.subjectIndustrial economicsen_US
dc.subjectPlanningen_US
dc.subjectProblem solvingen_US
dc.subjectSustainable developmenten_US
dc.subjectEnergy supplyen_US
dc.subjectEnergy resourcesen_US
dc.titleEnergy demand estimation based on two-different genetic algorithm approachesen_US
dc.typeArticleen_US
dc.identifier.volume26en_US
dc.identifier.issue14en_US
dc.identifier.startpage1313
dc.identifier.startpage1313en_US
dc.identifier.endpage1320en_US
dc.authorid0000-0003-3690-6608-
dc.authorid0000-0002-4616-5439-
dc.authorid0000-0003-4831-1118-
dc.identifier.doi10.1080/00908310490441610-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-8344249357en_US
dc.identifier.wosWOS:000224427500002en_US
local.message.claim2023-07-12T13:22:36.741+0300|||rp00390|||submit_approve|||dc_contributor_author|||None*
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept10.07. Mechanical Engineering-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

69
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

53
checked on Nov 16, 2024

Page view(s)

68
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.