Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/50375
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞentürk, Fatmana-
dc.contributor.authorAytaç, Vecdi-
dc.date.accessioned2023-04-06T08:40:21Z-
dc.date.available2023-04-06T08:40:21Z-
dc.date.issued2023-
dc.identifier.issn0288-3635-
dc.identifier.issn1882-7055-
dc.identifier.urihttps://doi.org/10.1007/s00354-022-00200-3-
dc.identifier.urihttps://hdl.handle.net/11499/50375-
dc.descriptionArticle; Early Accessen_US
dc.description.abstractOntologies are domain-specific metadata that describe relationships between a specific field's properties, sample data of this field, and properties developed for many different purposes. Also, ontologies can be defined by other names within the same domain. Ontology matching algorithms eliminate definition differences and find similarities between existing ontologies. Ontology matching algorithms are used especially for information management, data integration, information extraction, etc. In this study, a graph-based framework is proposed to match large ontologies. This framework is aimed to divide the large ontologies into small pieces and then matches them using sub-graph mining algorithms. Karger algorithm and CP (clique percolation and nearest neighbor) algorithm are used to divide large ontologies. Both algorithms were applied to ontologies for the first time. In the next step, these obtained sub-parts are matched by using sub-graph mining algorithms. GraMi and gSpan algorithms were selected and were used for the first time in the field of ontology matching. We validated our framework using Anatomy and Conference data sets. Also, the proposed framework is compared with widely used in the literature AML and Falcon-AO matching algorithms. According to obtained the results, it is seen that GraMi is better than matching algorithms.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofNew Generation Computingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectOntology alignmenten_US
dc.subjectOntology matchingen_US
dc.subjectGraph algorithmsen_US
dc.subjectGraph theoryen_US
dc.subjectGraph miningen_US
dc.subjectAlignmenten_US
dc.titleA Graph-Based Ontology Matching Frameworken_US
dc.typeArticleen_US
dc.departmentPamukkale Universityen_US
dc.authoridŞentürk, Fatmana/0000-0002-5548-6015-
dc.identifier.doi10.1007/s00354-022-00200-3-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57062960200-
dc.authorscopusid56636135000-
dc.identifier.scopus2-s2.0-85145676686en_US
dc.identifier.wosWOS:000909907800001en_US
dc.institutionauthor-
dc.identifier.scopusqualityQ3-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 21, 2024

Page view(s)

64
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.