Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/50404
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKızılkaya, Aydın-
dc.contributor.authorElbi, Mehmet Doğan-
dc.date.accessioned2023-04-08T09:58:29Z-
dc.date.available2023-04-08T09:58:29Z-
dc.date.issued2023-
dc.identifier.issn0165-1684-
dc.identifier.issn1872-7557-
dc.identifier.urihttps://doi.org/10.1016/j.sigpro.2022.108916-
dc.identifier.urihttps://hdl.handle.net/11499/50404-
dc.description.abstractThe Fourier Decomposition Method (FDM) is an advanced tool to gather information about signals from nonlinear and/or non-stationary systems. It decomposes a signal into a finite set of zero-mean band-limited oscillation modes, so-called analytic Fourier intrinsic band functions (AFIBFs). Owing to its ampli-tude and frequency modulation properties, each AFIBF enables local analysis of signals. Thus, the deter-mination of AFIBFs is of the key point in performing the FDM. In the traditional case, AFIBFs are obtained iteratively by evaluating numerous inverse discrete Fourier transforms (IDFTs). Also, phase calculations and unwrapping operations must be performed on IDFTs to examine the positivity of instantaneous fre-quencies. Hence, the classical FDM suffers from heavy computational burden, mAkıng it challenging to analyze large-size signals. This paper proposes a new approach to implement the FDM faster than its traditional one, without the need for phase calculation, unwrapping and derivation operations, and also exploits the computational efficiency of the inverse fast Fourier transform. Despite its low computational cost and thus improved computation speed, the new approach decomposes the signal into the same AFIBFs as the conventional one. Simulation results show that the proposed approach outperforms its tra-ditional counterpart in terms of both computational complexity and computation time.(c) 2022 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofSignal Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFast implementationen_US
dc.subjectFourier decomposition methoden_US
dc.subjectFast Fourier transformen_US
dc.subjectSignal decompositionen_US
dc.subjectTime-frequency analysisen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectFrequency Estimationen_US
dc.subjectNoiseen_US
dc.subjectArctangenten_US
dc.subjectAlgorithmen_US
dc.subjectSignalen_US
dc.titleA fast approach of implementing the Fourier decomposition method for nonlinear and non-stationary time series analysisen_US
dc.typeArticleen_US
dc.identifier.volume206en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1016/j.sigpro.2022.108916-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid55966190300-
dc.authorscopusid55293354700-
dc.identifier.scopus2-s2.0-85145771914en_US
dc.identifier.wosWOS:000921238800001en_US
dc.institutionauthor-
dc.identifier.scopusqualityQ1-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.