Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/50574
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDurgut, R.-
dc.contributor.authorTuracı, T.-
dc.date.accessioned2023-04-08T10:03:46Z-
dc.date.available2023-04-08T10:03:46Z-
dc.date.issued2023-
dc.identifier.issn1040-6638-
dc.identifier.urihttps://doi.org/10.1080/10406638.2021.2011330-
dc.identifier.urihttps://hdl.handle.net/11499/50574-
dc.description.abstractLet (Formula preŞented.) be a simple molecular graph without directed and multiple edges and without loops. Graph theory has become an important component of the chemical mathematics, and it has become one of the most powerful mathematical tools in the analysis and study of the architecture of a chemical network. It studies of descriptors in quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR) studies in the chemistry science. There are a lot of topological indices in QSPR/QSAR studies. In this paper, some eccentricity-based topological indices namely the eccentric connectivity index (Formula preŞented.) the modified eccentric connectivity index (Formula preŞented.) the total eccentricity index (Formula preŞented.) the second Zagreb eccentricity index (Formula preŞented.) and the average eccentricity index (Formula preŞented.) are computed for the para-line graphs of some hexagonal cactus chains namely the para-chain (Formula preŞented.) the ortho-chain (Formula preŞented.) and the meta-chain (Formula preŞented.). © 2021 Taylor & Francis Group, LLC.en_US
dc.description.sponsorshipThe authors are grateful to the editors and the anonymous referees for their constructive comments and valuable suggestions which have helped us very much to improve the paper.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofPolycyclic Aromatic Compoundsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChemical graph theoryen_US
dc.subjecteccentricityen_US
dc.subjecthexagonal cactus chainsen_US
dc.subjectpara-line graphen_US
dc.subjecttopological indexen_US
dc.titleComputing Some Eccentricity-Based Topological Indices of Para-Line Graphs of Hexagonal Cactus Chainsen_US
dc.typeArticleen_US
dc.identifier.volume43en_US
dc.identifier.issue1en_US
dc.identifier.startpage115en_US
dc.identifier.endpage130en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1080/10406638.2021.2011330-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57190742058-
dc.authorscopusid36864330200-
dc.identifier.scopus2-s2.0-85121129049en_US
dc.identifier.wosWOS:000727095800001en_US
dc.institutionauthor-
dc.identifier.scopusqualityQ3-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 22, 2024

Page view(s)

60
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.