Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/50575
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKazak, S.-
dc.contributor.authorFujita, T.-
dc.contributor.authorTurmo, M.P.-
dc.date.accessioned2023-04-08T10:03:47Z-
dc.date.available2023-04-08T10:03:47Z-
dc.date.issued2023-
dc.identifier.issn1098-6065-
dc.identifier.urihttps://doi.org/10.1080/10986065.2021.1922857-
dc.identifier.urihttps://hdl.handle.net/11499/50575-
dc.description.abstractIn today’s age of information, the use of data is very powerful in mAkıng informed decisions. Data analytics is a field that is interested in identifying and interpreting trends and patterns within big data to make data-driven decisions. We focus on informal statistical inference and data modeling as a means of developing students’ data analytics skills in school. In this study, we examine how students apply the data modeling process to draw informal inferences when exploring trends, patterns and relationships in a real daTaşet using technological tools, such as CODAP and Excel. We analyzed 17–18-year-old students’ written reports on their explorations of data supplied by third parties. Students used a variety of statistical measures and visualizations to account for variability in analyzing data. They tended to make statements with certainty in their inferences and predictions beyond the data. When the pattern in the data was uncertain, they were inclined to use contextual knowledge to remain certain in their claims. © 2021 Taylor & Francis Group, LLC.en_US
dc.description.sponsorshipEuropean Commission, ECen_US
dc.description.sponsorshipThe Strategic Partnership for the Innovative Application of Data Analytics in Schools (SPIDAS) project is funded with support from the European Union’s Erasmus+ Programme. All views expressed are those of the authors and not of the European Commission.en_US
dc.language.isoenen_US
dc.publisherRoutledgeen_US
dc.relation.ispartofMathematical Thinking and Learningen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectData analyticsen_US
dc.subjectdata modelingen_US
dc.subjectinformal statistical inferenceen_US
dc.subjectupper secondaryen_US
dc.titleStudents’ informal statistical inferences through data modeling with a large multivariate daTaşeten_US
dc.typeArticleen_US
dc.identifier.volume25en_US
dc.identifier.issue1en_US
dc.identifier.startpage23en_US
dc.identifier.endpage43en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1080/10986065.2021.1922857-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid56000069200-
dc.authorscopusid55855129900-
dc.authorscopusid23482991800-
dc.identifier.scopus2-s2.0-85107508943en_US
dc.identifier.wosWOS:000657222100001en_US
dc.institutionauthor-
dc.identifier.scopusqualityQ1-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept09.01. Mathematics and Science Teaching-
Appears in Collections:Diğer Yayınlar Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Dec 14, 2024

WEB OF SCIENCETM
Citations

8
checked on Dec 20, 2024

Page view(s)

58
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.