Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/50625
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Toprak, E. | - |
dc.contributor.author | Kalkan, Ö.K. | - |
dc.date.accessioned | 2023-04-08T10:04:57Z | - |
dc.date.available | 2023-04-08T10:04:57Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 0034-8082 | - |
dc.identifier.uri | https://doi.org/10.4438/1988-592X-RE-2023-399-568 | - |
dc.identifier.uri | https://hdl.handle.net/11499/50625 | - |
dc.description.abstract | Studies aiming to determine the importance rankings of one or more predictor variables on the predicted variable are frequently encountered in education. Multiple Regression (MR) and artificial neural network (ANN) are widely used in this type of research. The preŞent study compares the predictive importance rank performances of MR and ANN methods. For this purpose, two separate real data sets, in which MR assumptions are met and the predictor variables are continuous or discrete, and simulation data generated by considering the relationships in these data sets were used. Absolute relative bias (ARB) and mean square errors (MSE) were used to compare the methods’ performances. The results of the research showed that the increase in sample size had an improving effect on the ARBs and MSEs of the methods. In addition, if the predictors are continuous, researchers may be advised to choose either MR or ANN. However, in cases where the predictors are discrete and the number of predictors is three or more, the use of ANN is recommended. In order to obtain optimal estimations with both methods, it is recommended that researchers use a sample size of at least 200. © 2023, Ministry Education and Science. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ministry Education and Science | en_US |
dc.relation.ispartof | Revista de Educacion | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | artificial neural networks | en_US |
dc.subject | continuous predictor | en_US |
dc.subject | discrete predictor | en_US |
dc.subject | multiple regression analysis | en_US |
dc.subject | order of importance | en_US |
dc.subject | predictive correlational research | en_US |
dc.title | Comparison of multiple regression and artificial neural network performances in determining the order of importance of predictors in educational research | en_US |
dc.title.alternative | Comparación del rendimiento de la regresión múltiple y la red neuronal artificial en la determinación del orden de importancia de los predictores en la investigación educativa | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 2023 | en_US |
dc.identifier.issue | 399 | en_US |
dc.identifier.startpage | 221 | en_US |
dc.identifier.endpage | 253 | en_US |
dc.department | Pamukkale University | en_US |
dc.identifier.doi | 10.4438/1988-592X-RE-2023-399-568 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.authorscopusid | 58019572000 | - |
dc.authorscopusid | 57163498300 | - |
dc.identifier.scopus | 2-s2.0-85146382368 | en_US |
dc.identifier.wos | WOS:001061971000010 | en_US |
dc.institutionauthor | … | - |
dc.identifier.scopusquality | Q2 | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
crisitem.author.dept | 09.05. Educational Sciences | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Mar 8, 2025
Page view(s)
92
checked on Mar 4, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.