Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/50713
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGökçe, Fadime-
dc.date.accessioned2023-04-08T10:06:35Z-
dc.date.available2023-04-08T10:06:35Z-
dc.date.issued2022-
dc.identifier.issn2148-1830-
dc.identifier.urihttps://doi.org/10.47000/tjmcs.1007885-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1117718-
dc.identifier.urihttps://hdl.handle.net/11499/50713-
dc.description.abstractIn recent paper, the space $ leftvert E_{phi}^{r}rightvert (mu)$ which is the generalization of the absolute Euler Space on the space $l(mu)$, has been introduced and studied by Gökçe and Sarıgöl [3]. In this study, we give certain characterizations of matrix transformations from the paranormed space $ leftvert E_{phi}^{r}rightvert (mu)$ to one of the classical sequence spaces $c_{0},c,l_{infty }.$ Also, we show that such matrix operators are bounded linear operators.en_US
dc.language.isoenen_US
dc.relation.ispartofTurkish Journal of Mathematics and Computer Scienceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEuler meansen_US
dc.subjectabsolute summabilityen_US
dc.subjectmatrix transformationsen_US
dc.titleMatrix Operators on the Absolute Euler space leftvertErphirightvert(mu)en_US
dc.typeArticleen_US
dc.identifier.issue1en_US
dc.identifier.startpage117en_US
dc.identifier.endpage123en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.47000/tjmcs.1007885-
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid1117718en_US
dc.institutionauthor-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
crisitem.author.dept17.07. Statistics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
Files in This Item:
File SizeFormat 
document - 2024-03-15T115223.123.pdf233.43 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

36
checked on Aug 24, 2024

Download(s)

18
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.