Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/5125
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCanyurt, Olcay Ersel-
dc.date.accessioned2019-08-16T11:41:46Z
dc.date.available2019-08-16T11:41:46Z
dc.date.issued2004-
dc.identifier.issn0020-7403-
dc.identifier.urihttps://hdl.handle.net/11499/5125-
dc.identifier.urihttps://doi.org/10.1016/j.ijmecsci.2004.03.015-
dc.description.abstractThe bonding strength of adhesives is influenced by many factors such as, the surface roughness, bonding clearances, interference fit, temperature, and material of the joining parts, etc. Since all these factors affect the strength of the adhesively joined parts, the effects of these parameters need to be investigated. The present paper describes the use of stochastic search process that is the basis of Genetic Algorithm (GA), in developing fatigue strength estimation of adhesively bonded cylindrical components. Nonlinear estimation models are developed using GA. Developed models are validated with experimental data. Genetic Algorithm Fatigue Strength Estimation Model (GAFSEM) is developed to estimate the fatigue strength of the adhesively bonded tubular joint using several adherent materials, such as steel, bronze and aluminum materials. © 2004 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Mechanical Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBonded tubular jointen_US
dc.subjectFatigue strengthen_US
dc.subjectGenetic algorithmen_US
dc.subjectAdhesionen_US
dc.subjectAluminumen_US
dc.subjectBondingen_US
dc.subjectEstimationen_US
dc.subjectFatigue of materialsen_US
dc.subjectGenetic algorithmsen_US
dc.subjectStrength of materialsen_US
dc.subjectSurface roughnessen_US
dc.subjectBonded tubular jointsen_US
dc.subjectBonding clearancesen_US
dc.subjectCylindrical materialsen_US
dc.subjectJoints (structural components)en_US
dc.titleFatigue strength estimation of adhesively bonded tubular joint using genetic algorithm approachen_US
dc.typeArticleen_US
dc.identifier.volume46en_US
dc.identifier.issue3en_US
dc.identifier.startpage359
dc.identifier.startpage359en_US
dc.identifier.endpage370en_US
dc.authorid0000-0003-3690-6608-
dc.identifier.doi10.1016/j.ijmecsci.2004.03.015-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-2942650883en_US
dc.identifier.wosWOS:000222537700002en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

21
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

19
checked on Dec 18, 2024

Page view(s)

32
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.