Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/51268
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKucukaslan, A.-
dc.contributor.authorGuliyev, V. S.-
dc.contributor.authorAykol, C.-
dc.contributor.authorSerbetci, A.-
dc.date.accessioned2023-06-13T19:15:39Z-
dc.date.available2023-06-13T19:15:39Z-
dc.date.issued2023-
dc.identifier.issn0003-6811-
dc.identifier.issn1563-504X-
dc.identifier.urihttps://doi.org/10.1080/00036811.2021.1952995-
dc.descriptionAykol, Canay/0000-0002-2854-6369; Kucukaslan, Abdulhamit/0000-0002-9207-8977en_US
dc.description.abstractIn this paper, we give the definition of local variable Morrey-Lorentz spaces M-p(.),q(.),lambda(loc) (R-n) which are a new class of functions. Also, we prove the boundedness of the Hardy- Littlewood maximal operator M and Calderon- Zygmund operators T on these spaces. Finally, we apply these results to the Bochner-Riesz operator B-d(delta), identity approximation Ae and the Marcinkiewicz operator mu(Omega) on the spaces M-p(.),q(.),lambda(loc) (R-n) .en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey [TUBITAK] [1059B191600675]; Elmin Inkisaf Fondu [EIF-BGM-4-RFTF-1/2017-21/01/1-M-08]; Cooperation Program TUBITAK-RFBR (Russian Foundation for Basic Research) [119N455, 2532]en_US
dc.description.sponsorshipThe research of Kucukaslan was supported by the grant from The Scientific and Technological Research Council of Turkey [TUBITAK Grant-1059B191600675]. The research of Guliyev was partially supported by the grant from Elmin Inkisaf Fondu [Agreement No. EIF-BGM-4-RFTF-1/2017-21/01/1-M-08]. The research of Guliyev and Serbetci was partially supported by the grant from Cooperation Program 2532 TUBITAK-RFBR (Russian Foundation for Basic Research) with Agreement Number No. 119N455.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLocal Variable Morrey-Lorentz Spaceen_US
dc.subjectHardy-Littlewood Maximal Functionen_US
dc.subjectCalderon-Zygmund Operatorsen_US
dc.titleMaximal and Calderon-Zygmund Operators on the Local Variable Morrey-Lorentz Spaces and Some Applicationsen_US
dc.typeArticleen_US
dc.identifier.volume102en_US
dc.identifier.issue2en_US
dc.identifier.startpage406en_US
dc.identifier.endpage415en_US
dc.departmentPamukkale Universityen_US
dc.authoridAykol, Canay/0000-0002-2854-6369-
dc.authoridKucukaslan, Abdulhamit/0000-0002-9207-8977-
dc.identifier.doi10.1080/00036811.2021.1952995-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidAykol, Canay/Htq-4295-2023-
dc.authorwosidKucukaslan, Abdulhamit/Aaa-4046-2021-
dc.authorwosidSerbetci, Ayhan/Aak-3677-2020-
dc.identifier.scopus2-s2.0-85110684660en_US
dc.identifier.scopus2-s2.0-85110684660-
dc.identifier.wosWOS:000673099500001-
dc.institutionauthor-
dc.identifier.scopusqualityQ2-
dc.description.woscitationindexScience Citation Index Expanded-
dc.identifier.wosqualityQ3-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
Appears in Collections:Diğer Yayınlar Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Jan 4, 2025

WEB OF SCIENCETM
Citations

4
checked on Mar 31, 2025

Page view(s)

88
checked on Mar 4, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.