Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/5141
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzturk, H.K.-
dc.contributor.authorCanyurt, O.E.-
dc.contributor.authorHepbasli, A.-
dc.contributor.authorUtlu, Z.-
dc.date.accessioned2019-08-16T11:41:58Z-
dc.date.available2019-08-16T11:41:58Z-
dc.date.issued2004-
dc.identifier.issn0378-7788-
dc.identifier.urihttps://hdl.handle.net/11499/5141-
dc.identifier.urihttps://doi.org/10.1016/j.enbuild.2003.11.001-
dc.description.abstractThe main objective of the present study is to develop the energy input estimation equations for the residential-commercial sector (RCS) in order to estimate the future projections based on genetic algorithm (GA) notion and to examine the effect of the design parameters on the energy input of the sector. For this purpose, the Turkish RCS is given as an example. The GA Energy Input Estimation Model (GAEIEM) is used to estimate Turkey's future residential-commercial energy input demand based on GDP, population, import, export, house production, cement production and basic house appliances consumption figures. It may be concluded that the three various forms of models proposed here can be used as an alternative solution and estimation techniques to available estimation techniques. It is also expected that this study will be helpful in developing highly applicable and productive planning for energy policies. © 2003 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofEnergy and Buildingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnergyen_US
dc.subjectEnergy modellingen_US
dc.subjectEnergy planningen_US
dc.subjectEnergy useen_US
dc.subjectFuture projectionsen_US
dc.subjectGAen_US
dc.subjectGenetic algorithmen_US
dc.subjectResidentialen_US
dc.subjectTurkeyen_US
dc.subjectDomestic appliancesen_US
dc.subjectEstimationen_US
dc.subjectGenetic algorithmsen_US
dc.subjectMathematical modelsen_US
dc.subjectOptimizationen_US
dc.subjectPlanningen_US
dc.subjectSolar energyen_US
dc.subjectStructural designen_US
dc.subjectEnergy modelingen_US
dc.subjectEnergy utilizationen_US
dc.titleResidential-commercial energy input estimation based on genetic algorithm (GA) approaches: An application of Turkeyen_US
dc.typeArticleen_US
dc.identifier.volume36en_US
dc.identifier.issue2en_US
dc.identifier.startpage175
dc.identifier.startpage175en_US
dc.identifier.endpage183en_US
dc.identifier.doi10.1016/j.enbuild.2003.11.001-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-0346339809en_US
dc.identifier.wosWOS:000189122300009en_US
local.message.claim2023-07-12T19:54:03.487+0300|||rp00390|||submit_approve|||dc_contributor_author|||None*
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

75
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

73
checked on Nov 21, 2024

Page view(s)

36
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.