Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/5183
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖztürk, Harun Kemal.-
dc.contributor.authorCeylan, Halim.-
dc.contributor.authorHepbasli, A.-
dc.contributor.authorUtlu, Z.-
dc.date.accessioned2019-08-16T11:42:36Z
dc.date.available2019-08-16T11:42:36Z
dc.date.issued2004-
dc.identifier.issn1364-0321-
dc.identifier.urihttps://hdl.handle.net/11499/5183-
dc.identifier.urihttps://doi.org/10.1016/j.rser.2003.10.004-
dc.description.abstractThis study deals with exergy estimation of petroleum using genetic algorithm (GA) approach. The exergy estimation is carried out based on the gross domestic product (GDP) and the percentage of vehicle ownership figures in Turkey. Genetic Algorithm EXergy Production and Consumption (GAPEX) is developed. During the estimation of petroleum exergy, the GA is combined with time-series approach. For exergy consumption, three forms of the GAPEX are developed, of which one is linear, the second is exponential and the third is quadratic form of the equations. Among them, the best fit models in terms of average relative errors for the testing period are selected for future estimation. It may be concluded that the models proposed here can be used as an alternative solution and estimation techniques for available estimation techniques. © 2003 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofRenewable and Sustainable Energy Reviewsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnergyen_US
dc.subjectEnergy demanden_US
dc.subjectEnergy modelingen_US
dc.subjectEnergy planningen_US
dc.subjectExergyen_US
dc.subjectExergy modelingen_US
dc.subjectFuture projectionsen_US
dc.subjectGAen_US
dc.subjectGenetic algorithmen_US
dc.subjectTurkeyen_US
dc.subjectEnergy policyen_US
dc.subjectEnergy utilizationen_US
dc.subjectError analysisen_US
dc.subjectGenetic algorithmsen_US
dc.subjectOil well productionen_US
dc.subjectSustainable developmenten_US
dc.subjectTime series analysisen_US
dc.subjectGenetic algorithm (GA)en_US
dc.subjectPetroleum reservoirsen_US
dc.titleEstimating petroleum exergy production and consumption using vehicle ownership and GDP based on genetic algorithm approachen_US
dc.typeReviewen_US
dc.identifier.volume8en_US
dc.identifier.issue3en_US
dc.identifier.startpage289
dc.identifier.startpage289en_US
dc.identifier.endpage302en_US
dc.authorid0000-0003-4831-1118-
dc.authorid0000-0002-4616-5439-
dc.identifier.doi10.1016/j.rser.2003.10.004-
dc.relation.publicationcategoryDiğeren_US
dc.identifier.scopus2-s2.0-1242263787en_US
dc.identifier.wosWOS:000220293000006en_US
local.message.claim2023-07-12T13:22:51.142+0300|||rp00390|||submit_approve|||dc_contributor_author|||None*
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeReview-
crisitem.author.dept10.07. Mechanical Engineering-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

29
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

24
checked on Nov 21, 2024

Page view(s)

42
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.