Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/51975
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mutlu Öztürk, Hande | - |
dc.contributor.author | Öztürk, Harun Kemal | - |
dc.date.accessioned | 2023-08-22T18:48:05Z | - |
dc.date.available | 2023-08-22T18:48:05Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 2602-2834 | - |
dc.identifier.uri | https://hdl.handle.net/11499/51975 | - |
dc.identifier.uri | https://doi.org/10.3153/FH23020 | - |
dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/1189033 | - |
dc.description.abstract | The main idea of this study is to investigate Türkiye’s meat consumption, projection and supplies by using the structure of the Turkish meat industry and Turkish economic indicators. This present study develops several models for the analysis of meat consumption and makes future estimations based on the Regression Analysis Meat Consumption Model (RAMCM). Four forms of Regres- sion Analysis models are used to estimate meat consumption. These models are named Multiple Linear Regression Analysis (MULIRA), Linear Regression Analysis (LIRA), Polynomial Linear Regression Analysis (POLIRA), and Logarithmic Linear Regression Analysis. The models deve- loped in the linear and non-linear forms are applied to estimate meat consumption in Türkiye based on social and economic indicators; Population, Gross National Product (GNP) per capita, Imports of goods and services (% of GDP), Exports of goods and services (% of GDP), electricity con- sumption per capita, unemployment, Gross capital formation (% of GDP) figures. It may be conc- luded that the Multiple Linear Regression Analysis models can be used as alternative solutions and estimation techniques for any country's future meat consumption values. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Food and Health | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.title | Estimating meat consumption based on economic indicators using linear regression analysis approach: A case study of Türkiye | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 9 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 212 | en_US |
dc.identifier.endpage | 229 | en_US |
dc.department | Pamukkale University | en_US |
dc.identifier.doi | 10.3153/FH23020 | - |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.trdizinid | 1189033 | en_US |
dc.institutionauthor | … | - |
dc.identifier.scopusquality | Q1 | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
crisitem.author.dept | 21.01. Gastronomy and Culinary Arts | - |
crisitem.author.dept | 10.07. Mechanical Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection Turizm Fakültesi Koleksiyonu |
Files in This Item:
File | Size | Format | |
---|---|---|---|
tmp-f0fa6e80-56c0-4596-af20-1b3f0d3de877.asl3350.pdf.pdf | 997.17 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
48
checked on Aug 24, 2024
Download(s)
6
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.