Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/52014
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | İncekara, Mustafa | - |
dc.contributor.author | Tokat, Sezai | - |
dc.contributor.author | Öztürk, Cemal | - |
dc.date.accessioned | 2023-08-22T18:48:08Z | - |
dc.date.available | 2023-08-22T18:48:08Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 1308-2922 | - |
dc.identifier.issn | 2147-6985 | - |
dc.identifier.uri | https://hdl.handle.net/11499/52014 | - |
dc.identifier.uri | https://doi.org/10.30794/pausbed.1127776 | - |
dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/1176231 | - |
dc.description.abstract | This paper aims to apply a deep learning algorithm to estimate the prediction of various external financial input variables on adopting eco-innovation practices such as renewable energy operations of 5456 SMEs. A Long Short-Term Memory Units (LSTM) is applied to the data set to evaluate the performance of different input variables on the adoption of renewable energy. Furthermore, we process the dataset with different machine learning algorithms and compare the results. The findings indicate that LSTM gives the highest performance for all metrics. As a result, some important theoretical implications for management scholars are given. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.title | Is It Possible to Apply a Deep Learning Algorithm to Innovation Management Research? | en_US |
dc.type | Article | en_US |
dc.identifier.issue | 56 | en_US |
dc.identifier.startpage | 217 | en_US |
dc.identifier.endpage | 226 | en_US |
dc.department | Pamukkale University | en_US |
dc.identifier.doi | 10.30794/pausbed.1127776 | - |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.trdizinid | 1176231 | en_US |
dc.institutionauthor | … | - |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 08.04. Business Administration | - |
crisitem.author.dept | 10.10. Computer Engineering | - |
crisitem.author.dept | 23.05. Marketing and Advertising | - |
Appears in Collections: | İktisadi ve İdari Bilimler Fakültesi Koleksiyonu Mühendislik Fakültesi Koleksiyonu TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
document (35).pdf | 2.82 MB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
92
checked on Aug 24, 2024
Download(s)
32
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.