Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/52014
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİncekara, Mustafa-
dc.contributor.authorTokat, Sezai-
dc.contributor.authorÖztürk, Cemal-
dc.date.accessioned2023-08-22T18:48:08Z-
dc.date.available2023-08-22T18:48:08Z-
dc.date.issued2023-
dc.identifier.issn1308-2922-
dc.identifier.issn2147-6985-
dc.identifier.urihttps://hdl.handle.net/11499/52014-
dc.identifier.urihttps://doi.org/10.30794/pausbed.1127776-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1176231-
dc.description.abstractThis paper aims to apply a deep learning algorithm to estimate the prediction of various external financial input variables on adopting eco-innovation practices such as renewable energy operations of 5456 SMEs. A Long Short-Term Memory Units (LSTM) is applied to the data set to evaluate the performance of different input variables on the adoption of renewable energy. Furthermore, we process the dataset with different machine learning algorithms and compare the results. The findings indicate that LSTM gives the highest performance for all metrics. As a result, some important theoretical implications for management scholars are given.en_US
dc.language.isoenen_US
dc.relation.ispartofPamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleIs It Possible to Apply a Deep Learning Algorithm to Innovation Management Research?en_US
dc.typeArticleen_US
dc.identifier.issue56en_US
dc.identifier.startpage217en_US
dc.identifier.endpage226en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.30794/pausbed.1127776-
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid1176231en_US
dc.institutionauthor-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept08.04. Business Administration-
crisitem.author.dept10.10. Computer Engineering-
crisitem.author.dept23.05. Marketing and Advertising-
Appears in Collections:İktisadi ve İdari Bilimler Fakültesi Koleksiyonu
Mühendislik Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
Files in This Item:
File SizeFormat 
document (35).pdf2.82 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

92
checked on Aug 24, 2024

Download(s)

32
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.