Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/52026
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüleç, Ömer-
dc.date.accessioned2023-08-22T18:49:08Z-
dc.date.available2023-08-22T18:49:08Z-
dc.date.issued2023-
dc.identifier.issn1301-4048-
dc.identifier.issn2147-835X-
dc.identifier.urihttps://hdl.handle.net/11499/52026-
dc.identifier.urihttps://doi.org/10.16984/saufenbilder.1246617-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1184580-
dc.description.abstractSensing data from the environment is a basic process for the nano-sensors on the network. This sensitive data need to be transmitted to the base station for data processing. In Wireless Nano-Sensor Networks (WNSNs), nano-routers undertake the task of gathering data from the nano-sensors and transmitting it to the nano-gateways. When the number of nano-routers is not enough on the network, the data need to be transmitted by multi-hop routing. Therefore, there should be more nano-routers placed on the network for efficient direct data transmission to avoid multi-hop routing problems such as high energy consumption and network traffic. In this paper, a machine learning-supported nano-router localization algorithm for WNSNs is proposed. The algorithm aims to predict the number of required nano-routers depending on the network size for the maximum node coverage in order to ensure direct data transmission by estimating the best virtual coordinates of these nano-routers. According to the results, the proposed algorithm successfully places required nano-routers to the best virtual coordinates on the network which increases the node coverage by up to 98.03% on average and provides high accuracy for efficient direct data transmission.en_US
dc.language.isoenen_US
dc.relation.ispartofSakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleMachine Learning Supported Nano-Router Localization in WNSNsen_US
dc.typeArticleen_US
dc.identifier.volume27en_US
dc.identifier.issue3en_US
dc.identifier.startpage590en_US
dc.identifier.endpage602en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.16984/saufenbilder.1246617-
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid1184580en_US
dc.institutionauthor-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept08.01. Management Information Systems-
Appears in Collections:İktisadi ve İdari Bilimler Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
Files in This Item:
File SizeFormat 
document (43).pdf2.04 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

50
checked on Aug 24, 2024

Download(s)

14
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.